DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION

Systems and techniques for facilitating a deep learning architecture for automated image feature extraction are presented. In one example, a system includes a machine learning component. The machine learning component generates learned imaging output regarding imaging data based on a convolutional n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Min, Avinash, Gopal Biligeri
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhang, Min
Avinash, Gopal Biligeri
description Systems and techniques for facilitating a deep learning architecture for automated image feature extraction are presented. In one example, a system includes a machine learning component. The machine learning component generates learned imaging output regarding imaging data based on a convolutional neural network that receives the imaging data. The machine learning component also performs a plurality of sequential and/or parallel downsampling and upsampling of the imaging data associated with convolutional layers of the convolutional neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019122074A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019122074A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019122074A13</originalsourceid><addsrcrecordid>eNrjZHB0cXUNUPBxdQzy8_RzV3AMcvbwDHF1DgkNclVw8w9ScAwN8fd1DHF1UfD0dXQHirk6guVcI0KCHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGhpaGRkYG5iaOhMXGqAIDnK-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION</title><source>esp@cenet</source><creator>Zhang, Min ; Avinash, Gopal Biligeri</creator><creatorcontrib>Zhang, Min ; Avinash, Gopal Biligeri</creatorcontrib><description>Systems and techniques for facilitating a deep learning architecture for automated image feature extraction are presented. In one example, a system includes a machine learning component. The machine learning component generates learned imaging output regarding imaging data based on a convolutional neural network that receives the imaging data. The machine learning component also performs a plurality of sequential and/or parallel downsampling and upsampling of the imaging data associated with convolutional layers of the convolutional neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190425&amp;DB=EPODOC&amp;CC=US&amp;NR=2019122074A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190425&amp;DB=EPODOC&amp;CC=US&amp;NR=2019122074A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Avinash, Gopal Biligeri</creatorcontrib><title>DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION</title><description>Systems and techniques for facilitating a deep learning architecture for automated image feature extraction are presented. In one example, a system includes a machine learning component. The machine learning component generates learned imaging output regarding imaging data based on a convolutional neural network that receives the imaging data. The machine learning component also performs a plurality of sequential and/or parallel downsampling and upsampling of the imaging data associated with convolutional layers of the convolutional neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0cXUNUPBxdQzy8_RzV3AMcvbwDHF1DgkNclVw8w9ScAwN8fd1DHF1UfD0dXQHirk6guVcI0KCHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGhpaGRkYG5iaOhMXGqAIDnK-A</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Zhang, Min</creator><creator>Avinash, Gopal Biligeri</creator><scope>EVB</scope></search><sort><creationdate>20190425</creationdate><title>DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION</title><author>Zhang, Min ; Avinash, Gopal Biligeri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019122074A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Avinash, Gopal Biligeri</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Min</au><au>Avinash, Gopal Biligeri</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION</title><date>2019-04-25</date><risdate>2019</risdate><abstract>Systems and techniques for facilitating a deep learning architecture for automated image feature extraction are presented. In one example, a system includes a machine learning component. The machine learning component generates learned imaging output regarding imaging data based on a convolutional neural network that receives the imaging data. The machine learning component also performs a plurality of sequential and/or parallel downsampling and upsampling of the imaging data associated with convolutional layers of the convolutional neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019122074A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title DEEP LEARNING ARCHITECTURE FOR AUTOMATED IMAGE FEATURE EXTRACTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhang,%20Min&rft.date=2019-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019122074A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true