LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET
A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-si...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PFLEIDERER, GLEN GEORGE URBAHN, JOHN MENTEUR, PHILIPPE ABEL VOSS, MATTHEW |
description | A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-side electrical terminals (46, 47). A high temperature superconductor (HTS) lead (60) also disposed in the cryogenic container has a first end (62) electrically connected with the magnet-side electrical terminal of the contactor and a second end (64) electrically connected to the superconducting magnet winding. A first stage thermal station (52) thermally connected with the first end of the HTS lead has a temperature (T1) lower than the critical temperature (TC,HTS) of the HTS lead. A second stage thermal station (54) thermally connected with the second end of the HTS lead has a temperature (T2) lower than a critical temperature (TC) of the superconducting magnet winding (20). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019108933A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019108933A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019108933A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEsDqL-w4POQmMWOz6SlzbQJDVN5lIkTqKF-v-Ygh_gdOFy9uzWEypApyB2FCz2oMwovXMkI2gfIKAdjGvB66LABgNl-g3DmAYKxaok40Ysto7ike0e83PNp18PrNIUZXfOy3vK6zLf8yt_pjReat7w-toIgVz8p74lOi_x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET</title><source>esp@cenet</source><creator>PFLEIDERER, GLEN GEORGE ; URBAHN, JOHN ; MENTEUR, PHILIPPE ABEL ; VOSS, MATTHEW</creator><creatorcontrib>PFLEIDERER, GLEN GEORGE ; URBAHN, JOHN ; MENTEUR, PHILIPPE ABEL ; VOSS, MATTHEW</creatorcontrib><description>A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-side electrical terminals (46, 47). A high temperature superconductor (HTS) lead (60) also disposed in the cryogenic container has a first end (62) electrically connected with the magnet-side electrical terminal of the contactor and a second end (64) electrically connected to the superconducting magnet winding. A first stage thermal station (52) thermally connected with the first end of the HTS lead has a temperature (T1) lower than the critical temperature (TC,HTS) of the HTS lead. A second stage thermal station (54) thermally connected with the second end of the HTS lead has a temperature (T2) lower than a critical temperature (TC) of the superconducting magnet winding (20).</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; ELECTRICITY ; INDUCTANCES ; MAGNETS ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES ; TESTING ; TRANSFORMERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190411&DB=EPODOC&CC=US&NR=2019108933A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190411&DB=EPODOC&CC=US&NR=2019108933A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PFLEIDERER, GLEN GEORGE</creatorcontrib><creatorcontrib>URBAHN, JOHN</creatorcontrib><creatorcontrib>MENTEUR, PHILIPPE ABEL</creatorcontrib><creatorcontrib>VOSS, MATTHEW</creatorcontrib><title>LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET</title><description>A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-side electrical terminals (46, 47). A high temperature superconductor (HTS) lead (60) also disposed in the cryogenic container has a first end (62) electrically connected with the magnet-side electrical terminal of the contactor and a second end (64) electrically connected to the superconducting magnet winding. A first stage thermal station (52) thermally connected with the first end of the HTS lead has a temperature (T1) lower than the critical temperature (TC,HTS) of the HTS lead. A second stage thermal station (54) thermally connected with the second end of the HTS lead has a temperature (T2) lower than a critical temperature (TC) of the superconducting magnet winding (20).</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>ELECTRICITY</subject><subject>INDUCTANCES</subject><subject>MAGNETS</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</subject><subject>TESTING</subject><subject>TRANSFORMERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAUQNEsDqL-w4POQmMWOz6SlzbQJDVN5lIkTqKF-v-Ygh_gdOFy9uzWEypApyB2FCz2oMwovXMkI2gfIKAdjGvB66LABgNl-g3DmAYKxaok40Ysto7ike0e83PNp18PrNIUZXfOy3vK6zLf8yt_pjReat7w-toIgVz8p74lOi_x</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>PFLEIDERER, GLEN GEORGE</creator><creator>URBAHN, JOHN</creator><creator>MENTEUR, PHILIPPE ABEL</creator><creator>VOSS, MATTHEW</creator><scope>EVB</scope></search><sort><creationdate>20190411</creationdate><title>LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET</title><author>PFLEIDERER, GLEN GEORGE ; URBAHN, JOHN ; MENTEUR, PHILIPPE ABEL ; VOSS, MATTHEW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019108933A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>ELECTRICITY</topic><topic>INDUCTANCES</topic><topic>MAGNETS</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</topic><topic>TESTING</topic><topic>TRANSFORMERS</topic><toplevel>online_resources</toplevel><creatorcontrib>PFLEIDERER, GLEN GEORGE</creatorcontrib><creatorcontrib>URBAHN, JOHN</creatorcontrib><creatorcontrib>MENTEUR, PHILIPPE ABEL</creatorcontrib><creatorcontrib>VOSS, MATTHEW</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PFLEIDERER, GLEN GEORGE</au><au>URBAHN, JOHN</au><au>MENTEUR, PHILIPPE ABEL</au><au>VOSS, MATTHEW</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET</title><date>2019-04-11</date><risdate>2019</risdate><abstract>A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-side electrical terminals (46, 47). A high temperature superconductor (HTS) lead (60) also disposed in the cryogenic container has a first end (62) electrically connected with the magnet-side electrical terminal of the contactor and a second end (64) electrically connected to the superconducting magnet winding. A first stage thermal station (52) thermally connected with the first end of the HTS lead has a temperature (T1) lower than the critical temperature (TC,HTS) of the HTS lead. A second stage thermal station (54) thermally connected with the second end of the HTS lead has a temperature (T2) lower than a critical temperature (TC) of the superconducting magnet winding (20).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019108933A1 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS ELECTRICITY INDUCTANCES MAGNETS MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES TESTING TRANSFORMERS |
title | LEAD AND THERMAL DISCONNECT FOR RAMPING OF AN MRI OR OTHER SUPERCONDUCTING MAGNET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PFLEIDERER,%20GLEN%20GEORGE&rft.date=2019-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019108933A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |