TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL

A turbine airfoil (10) includes a flow blocking body (26) positioned an internal cavity (40). A first near-wall cooling channel (72) is defined between the flow blocking body (26) and an airfoil pressure sidewall (16). A second near-wall cooling channel (74) is defined between the flow blocking body...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sanders, Paul A, Marsh, Jan H
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sanders, Paul A
Marsh, Jan H
description A turbine airfoil (10) includes a flow blocking body (26) positioned an internal cavity (40). A first near-wall cooling channel (72) is defined between the flow blocking body (26) and an airfoil pressure sidewall (16). A second near-wall cooling channel (74) is defined between the flow blocking body (26) and an airfoil suction sidewall (18). A connecting channel (76) is defined between the flow blocking body (26) an internal partition wall (24) that connects the airfoil pressure (16) and suction (18) sidewalls. The connecting channel (76) is connected to the first (72) and second (74) near-wall cooling channels along a radial extent. Turbulating features (90, 90a-b) are located in the connecting channel (76) and are formed on the flow blocking body (26) and/or on the partition wall (24). The turbulating features (90, 90a-b) are effective to produce a higher coolant flow rate through the first (72) and second (74) near-wall cooling channels in comparison to the connecting channel (76).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019093487A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019093487A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019093487A13</originalsourceid><addsrcrecordid>eNrjZDAPCQ1y8vRzVXD0DHLz9_RRCPcM8VAACYb6OIZ4-rkruLk6ArmuCv5-Co4Kzv4-Lgrhjj4-PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDQ0sDS2MTC3NHQmDhVANWPKRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL</title><source>esp@cenet</source><creator>Sanders, Paul A ; Marsh, Jan H</creator><creatorcontrib>Sanders, Paul A ; Marsh, Jan H</creatorcontrib><description>A turbine airfoil (10) includes a flow blocking body (26) positioned an internal cavity (40). A first near-wall cooling channel (72) is defined between the flow blocking body (26) and an airfoil pressure sidewall (16). A second near-wall cooling channel (74) is defined between the flow blocking body (26) and an airfoil suction sidewall (18). A connecting channel (76) is defined between the flow blocking body (26) an internal partition wall (24) that connects the airfoil pressure (16) and suction (18) sidewalls. The connecting channel (76) is connected to the first (72) and second (74) near-wall cooling channels along a radial extent. Turbulating features (90, 90a-b) are located in the connecting channel (76) and are formed on the flow blocking body (26) and/or on the partition wall (24). The turbulating features (90, 90a-b) are effective to produce a higher coolant flow rate through the first (72) and second (74) near-wall cooling channels in comparison to the connecting channel (76).</description><language>eng</language><subject>BLASTING ; ENGINE PLANTS IN GENERAL ; HEATING ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190328&amp;DB=EPODOC&amp;CC=US&amp;NR=2019093487A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190328&amp;DB=EPODOC&amp;CC=US&amp;NR=2019093487A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sanders, Paul A</creatorcontrib><creatorcontrib>Marsh, Jan H</creatorcontrib><title>TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL</title><description>A turbine airfoil (10) includes a flow blocking body (26) positioned an internal cavity (40). A first near-wall cooling channel (72) is defined between the flow blocking body (26) and an airfoil pressure sidewall (16). A second near-wall cooling channel (74) is defined between the flow blocking body (26) and an airfoil suction sidewall (18). A connecting channel (76) is defined between the flow blocking body (26) an internal partition wall (24) that connects the airfoil pressure (16) and suction (18) sidewalls. The connecting channel (76) is connected to the first (72) and second (74) near-wall cooling channels along a radial extent. Turbulating features (90, 90a-b) are located in the connecting channel (76) and are formed on the flow blocking body (26) and/or on the partition wall (24). The turbulating features (90, 90a-b) are effective to produce a higher coolant flow rate through the first (72) and second (74) near-wall cooling channels in comparison to the connecting channel (76).</description><subject>BLASTING</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPCQ1y8vRzVXD0DHLz9_RRCPcM8VAACYb6OIZ4-rkruLk6ArmuCv5-Co4Kzv4-Lgrhjj4-PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDQ0sDS2MTC3NHQmDhVANWPKRA</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Sanders, Paul A</creator><creator>Marsh, Jan H</creator><scope>EVB</scope></search><sort><creationdate>20190328</creationdate><title>TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL</title><author>Sanders, Paul A ; Marsh, Jan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019093487A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BLASTING</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanders, Paul A</creatorcontrib><creatorcontrib>Marsh, Jan H</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanders, Paul A</au><au>Marsh, Jan H</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL</title><date>2019-03-28</date><risdate>2019</risdate><abstract>A turbine airfoil (10) includes a flow blocking body (26) positioned an internal cavity (40). A first near-wall cooling channel (72) is defined between the flow blocking body (26) and an airfoil pressure sidewall (16). A second near-wall cooling channel (74) is defined between the flow blocking body (26) and an airfoil suction sidewall (18). A connecting channel (76) is defined between the flow blocking body (26) an internal partition wall (24) that connects the airfoil pressure (16) and suction (18) sidewalls. The connecting channel (76) is connected to the first (72) and second (74) near-wall cooling channels along a radial extent. Turbulating features (90, 90a-b) are located in the connecting channel (76) and are formed on the flow blocking body (26) and/or on the partition wall (24). The turbulating features (90, 90a-b) are effective to produce a higher coolant flow rate through the first (72) and second (74) near-wall cooling channels in comparison to the connecting channel (76).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019093487A1
source esp@cenet
subjects BLASTING
ENGINE PLANTS IN GENERAL
HEATING
LIGHTING
MACHINES OR ENGINES IN GENERAL
MECHANICAL ENGINEERING
NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES
STEAM ENGINES
WEAPONS
title TURBINE AIRFOIL WITH TURBULATING FEATURE ON A COLD WALL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sanders,%20Paul%20A&rft.date=2019-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019093487A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true