MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT
An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs soft...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Tarevern, Hormoz Rajaram, Siddharth Busjaeger, JR., Benjamin Coker, JR., Berk Donaldson, J. Justin |
description | An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019087311A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019087311A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019087311A13</originalsourceid><addsrcrecordid>eNrjZHD1dXT28PRzVfBxdQzy8_RzV3ByDHZ1UQhy9PMG8fzdFEJcg0MUnIGiwQpu_kEKwf5uIeGOQa4KLq5hrj7-Ab6ufiE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwNDSwMLc2NDQ0dCYOFUAEZEsxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><source>esp@cenet</source><creator>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</creator><creatorcontrib>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</creatorcontrib><description>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190321&DB=EPODOC&CC=US&NR=2019087311A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190321&DB=EPODOC&CC=US&NR=2019087311A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tarevern, Hormoz</creatorcontrib><creatorcontrib>Rajaram, Siddharth</creatorcontrib><creatorcontrib>Busjaeger, JR., Benjamin</creatorcontrib><creatorcontrib>Coker, JR., Berk</creatorcontrib><creatorcontrib>Donaldson, J. Justin</creatorcontrib><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><description>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1dXT28PRzVfBxdQzy8_RzV3ByDHZ1UQhy9PMG8fzdFEJcg0MUnIGiwQpu_kEKwf5uIeGOQa4KLq5hrj7-Ab6ufiE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwNDSwMLc2NDQ0dCYOFUAEZEsxw</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Tarevern, Hormoz</creator><creator>Rajaram, Siddharth</creator><creator>Busjaeger, JR., Benjamin</creator><creator>Coker, JR., Berk</creator><creator>Donaldson, J. Justin</creator><scope>EVB</scope></search><sort><creationdate>20190321</creationdate><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><author>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019087311A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarevern, Hormoz</creatorcontrib><creatorcontrib>Rajaram, Siddharth</creatorcontrib><creatorcontrib>Busjaeger, JR., Benjamin</creatorcontrib><creatorcontrib>Coker, JR., Berk</creatorcontrib><creatorcontrib>Donaldson, J. Justin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarevern, Hormoz</au><au>Rajaram, Siddharth</au><au>Busjaeger, JR., Benjamin</au><au>Coker, JR., Berk</au><au>Donaldson, J. Justin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><date>2019-03-21</date><risdate>2019</risdate><abstract>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019087311A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tarevern,%20Hormoz&rft.date=2019-03-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019087311A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |