MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT

An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs soft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarevern, Hormoz, Rajaram, Siddharth, Busjaeger, JR., Benjamin, Coker, JR., Berk, Donaldson, J. Justin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tarevern, Hormoz
Rajaram, Siddharth
Busjaeger, JR., Benjamin
Coker, JR., Berk
Donaldson, J. Justin
description An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019087311A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019087311A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019087311A13</originalsourceid><addsrcrecordid>eNrjZHD1dXT28PRzVfBxdQzy8_RzV3ByDHZ1UQhy9PMG8fzdFEJcg0MUnIGiwQpu_kEKwf5uIeGOQa4KLq5hrj7-Ab6ufiE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwNDSwMLc2NDQ0dCYOFUAEZEsxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><source>esp@cenet</source><creator>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</creator><creatorcontrib>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</creatorcontrib><description>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190321&amp;DB=EPODOC&amp;CC=US&amp;NR=2019087311A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190321&amp;DB=EPODOC&amp;CC=US&amp;NR=2019087311A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tarevern, Hormoz</creatorcontrib><creatorcontrib>Rajaram, Siddharth</creatorcontrib><creatorcontrib>Busjaeger, JR., Benjamin</creatorcontrib><creatorcontrib>Coker, JR., Berk</creatorcontrib><creatorcontrib>Donaldson, J. Justin</creatorcontrib><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><description>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1dXT28PRzVfBxdQzy8_RzV3ByDHZ1UQhy9PMG8fzdFEJcg0MUnIGiwQpu_kEKwf5uIeGOQa4KLq5hrj7-Ab6ufiE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwNDSwMLc2NDQ0dCYOFUAEZEsxw</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Tarevern, Hormoz</creator><creator>Rajaram, Siddharth</creator><creator>Busjaeger, JR., Benjamin</creator><creator>Coker, JR., Berk</creator><creator>Donaldson, J. Justin</creator><scope>EVB</scope></search><sort><creationdate>20190321</creationdate><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><author>Tarevern, Hormoz ; Rajaram, Siddharth ; Busjaeger, JR., Benjamin ; Coker, JR., Berk ; Donaldson, J. Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019087311A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarevern, Hormoz</creatorcontrib><creatorcontrib>Rajaram, Siddharth</creatorcontrib><creatorcontrib>Busjaeger, JR., Benjamin</creatorcontrib><creatorcontrib>Coker, JR., Berk</creatorcontrib><creatorcontrib>Donaldson, J. Justin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarevern, Hormoz</au><au>Rajaram, Siddharth</au><au>Busjaeger, JR., Benjamin</au><au>Coker, JR., Berk</au><au>Donaldson, J. Justin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT</title><date>2019-03-21</date><risdate>2019</risdate><abstract>An online system ranks test cases run in connection with check-in of sets of software files in a software repository. The online system ranks the test cases higher if they are more likely to fail as a result of defects in the set of files being checked in. Accordingly, the online system informs software developers of potential defects in the files being checked in early without having to run the complete suite of test cases. The online system determines a vector representation of the files and test cases based on a neural network. The online system determines an aggregate vector representation of the set of files. The online system determines a measure of similarity between the test cases and the aggregate vector representation of the set of files. The online system ranks the test cases based on the measures of similarity of the test cases.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019087311A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title MACHINE LEARNING BASED RANKING OF TEST CASES FOR SOFTWARE DEVELOPMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tarevern,%20Hormoz&rft.date=2019-03-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019087311A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true