RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS
Annotation of large image datasets is provided. In various embodiments, a plurality of medical images is received. At least one collection is formed containing a subset of the plurality of medical images. One or more image from the at least one collection is provided to each of a plurality of remote...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Syeda-Mahmood, Tanveer Beymer, David Gur, Yaniv Bulu, Hakan Moradi, Mehdi Abedin, Shafiqul Pillai, Anup Talmor, Guy |
description | Annotation of large image datasets is provided. In various embodiments, a plurality of medical images is received. At least one collection is formed containing a subset of the plurality of medical images. One or more image from the at least one collection is provided to each of a plurality of remote users. An annotation template is provided to each of the plurality of remote users. Annotations for the one or more image are received from each of the plurality of remote users. The annotations and the plurality of medical images are stored together. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019026278A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019026278A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019026278A13</originalsourceid><addsrcrecordid>eNqNissKwjAQAHvxIOo_LHgutBF8HJc82kBMZLMReipF4km0UP8fe-gHeJmBYdZFR3izCiSFGMs7OquQtYKGQvIKmBK3gN4HRrbBQzDgkBoN9ooz5xmj5ggm0JLQo-vYyrgtVs_hNeXd4k2xN5plW-bx0-dpHB75nb99iqKqL5U4itMZ68N_1w_g5jJi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS</title><source>esp@cenet</source><creator>Syeda-Mahmood, Tanveer ; Beymer, David ; Gur, Yaniv ; Bulu, Hakan ; Moradi, Mehdi ; Abedin, Shafiqul ; Pillai, Anup ; Talmor, Guy</creator><creatorcontrib>Syeda-Mahmood, Tanveer ; Beymer, David ; Gur, Yaniv ; Bulu, Hakan ; Moradi, Mehdi ; Abedin, Shafiqul ; Pillai, Anup ; Talmor, Guy</creatorcontrib><description>Annotation of large image datasets is provided. In various embodiments, a plurality of medical images is received. At least one collection is formed containing a subset of the plurality of medical images. One or more image from the at least one collection is provided to each of a plurality of remote users. An annotation template is provided to each of the plurality of remote users. Annotations for the one or more image are received from each of the plurality of remote users. The annotations and the plurality of medical images are stored together.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190124&DB=EPODOC&CC=US&NR=2019026278A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190124&DB=EPODOC&CC=US&NR=2019026278A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Syeda-Mahmood, Tanveer</creatorcontrib><creatorcontrib>Beymer, David</creatorcontrib><creatorcontrib>Gur, Yaniv</creatorcontrib><creatorcontrib>Bulu, Hakan</creatorcontrib><creatorcontrib>Moradi, Mehdi</creatorcontrib><creatorcontrib>Abedin, Shafiqul</creatorcontrib><creatorcontrib>Pillai, Anup</creatorcontrib><creatorcontrib>Talmor, Guy</creatorcontrib><title>RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS</title><description>Annotation of large image datasets is provided. In various embodiments, a plurality of medical images is received. At least one collection is formed containing a subset of the plurality of medical images. One or more image from the at least one collection is provided to each of a plurality of remote users. An annotation template is provided to each of the plurality of remote users. Annotations for the one or more image are received from each of the plurality of remote users. The annotations and the plurality of medical images are stored together.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNissKwjAQAHvxIOo_LHgutBF8HJc82kBMZLMReipF4km0UP8fe-gHeJmBYdZFR3izCiSFGMs7OquQtYKGQvIKmBK3gN4HRrbBQzDgkBoN9ooz5xmj5ggm0JLQo-vYyrgtVs_hNeXd4k2xN5plW-bx0-dpHB75nb99iqKqL5U4itMZ68N_1w_g5jJi</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Syeda-Mahmood, Tanveer</creator><creator>Beymer, David</creator><creator>Gur, Yaniv</creator><creator>Bulu, Hakan</creator><creator>Moradi, Mehdi</creator><creator>Abedin, Shafiqul</creator><creator>Pillai, Anup</creator><creator>Talmor, Guy</creator><scope>EVB</scope></search><sort><creationdate>20190124</creationdate><title>RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS</title><author>Syeda-Mahmood, Tanveer ; Beymer, David ; Gur, Yaniv ; Bulu, Hakan ; Moradi, Mehdi ; Abedin, Shafiqul ; Pillai, Anup ; Talmor, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019026278A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Syeda-Mahmood, Tanveer</creatorcontrib><creatorcontrib>Beymer, David</creatorcontrib><creatorcontrib>Gur, Yaniv</creatorcontrib><creatorcontrib>Bulu, Hakan</creatorcontrib><creatorcontrib>Moradi, Mehdi</creatorcontrib><creatorcontrib>Abedin, Shafiqul</creatorcontrib><creatorcontrib>Pillai, Anup</creatorcontrib><creatorcontrib>Talmor, Guy</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syeda-Mahmood, Tanveer</au><au>Beymer, David</au><au>Gur, Yaniv</au><au>Bulu, Hakan</au><au>Moradi, Mehdi</au><au>Abedin, Shafiqul</au><au>Pillai, Anup</au><au>Talmor, Guy</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS</title><date>2019-01-24</date><risdate>2019</risdate><abstract>Annotation of large image datasets is provided. In various embodiments, a plurality of medical images is received. At least one collection is formed containing a subset of the plurality of medical images. One or more image from the at least one collection is provided to each of a plurality of remote users. An annotation template is provided to each of the plurality of remote users. Annotations for the one or more image are received from each of the plurality of remote users. The annotations and the plurality of medical images are stored together.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019026278A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | RAPID CROSS-VALIDATED GROUND TRUTH ANNOTATION OF LARGE IMAGE DATASETS FOR IMAGE ANALYTICS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Syeda-Mahmood,%20Tanveer&rft.date=2019-01-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019026278A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |