Multi-Modal Construction of Deep Learning Networks
Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep lea...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | AR, Rahul Mani, Senthil Kk Panwar, Naveen Gantayat, Neelamadhav Khare, Shreya Sankaran, Anush |
description | Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018307978A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018307978A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018307978A13</originalsourceid><addsrcrecordid>eNrjZDDyLc0pydT1zU9JzFFwzs8rLikqTS7JzM9TyE9TcElNLVDwSU0sysvMS1fwSy0pzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhhbGBuaW5haOhsbEqQIAW58s1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-Modal Construction of Deep Learning Networks</title><source>esp@cenet</source><creator>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</creator><creatorcontrib>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</creatorcontrib><description>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181025&DB=EPODOC&CC=US&NR=2018307978A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181025&DB=EPODOC&CC=US&NR=2018307978A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AR, Rahul</creatorcontrib><creatorcontrib>Mani, Senthil Kk</creatorcontrib><creatorcontrib>Panwar, Naveen</creatorcontrib><creatorcontrib>Gantayat, Neelamadhav</creatorcontrib><creatorcontrib>Khare, Shreya</creatorcontrib><creatorcontrib>Sankaran, Anush</creatorcontrib><title>Multi-Modal Construction of Deep Learning Networks</title><description>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDyLc0pydT1zU9JzFFwzs8rLikqTS7JzM9TyE9TcElNLVDwSU0sysvMS1fwSy0pzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhhbGBuaW5haOhsbEqQIAW58s1w</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>AR, Rahul</creator><creator>Mani, Senthil Kk</creator><creator>Panwar, Naveen</creator><creator>Gantayat, Neelamadhav</creator><creator>Khare, Shreya</creator><creator>Sankaran, Anush</creator><scope>EVB</scope></search><sort><creationdate>20181025</creationdate><title>Multi-Modal Construction of Deep Learning Networks</title><author>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018307978A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>AR, Rahul</creatorcontrib><creatorcontrib>Mani, Senthil Kk</creatorcontrib><creatorcontrib>Panwar, Naveen</creatorcontrib><creatorcontrib>Gantayat, Neelamadhav</creatorcontrib><creatorcontrib>Khare, Shreya</creatorcontrib><creatorcontrib>Sankaran, Anush</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AR, Rahul</au><au>Mani, Senthil Kk</au><au>Panwar, Naveen</au><au>Gantayat, Neelamadhav</au><au>Khare, Shreya</au><au>Sankaran, Anush</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-Modal Construction of Deep Learning Networks</title><date>2018-10-25</date><risdate>2018</risdate><abstract>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2018307978A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Multi-Modal Construction of Deep Learning Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AR,%20Rahul&rft.date=2018-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018307978A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |