Multi-Modal Construction of Deep Learning Networks

Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AR, Rahul, Mani, Senthil Kk, Panwar, Naveen, Gantayat, Neelamadhav, Khare, Shreya, Sankaran, Anush
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator AR, Rahul
Mani, Senthil Kk
Panwar, Naveen
Gantayat, Neelamadhav
Khare, Shreya
Sankaran, Anush
description Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018307978A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018307978A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018307978A13</originalsourceid><addsrcrecordid>eNrjZDDyLc0pydT1zU9JzFFwzs8rLikqTS7JzM9TyE9TcElNLVDwSU0sysvMS1fwSy0pzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhhbGBuaW5haOhsbEqQIAW58s1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-Modal Construction of Deep Learning Networks</title><source>esp@cenet</source><creator>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</creator><creatorcontrib>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</creatorcontrib><description>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181025&amp;DB=EPODOC&amp;CC=US&amp;NR=2018307978A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181025&amp;DB=EPODOC&amp;CC=US&amp;NR=2018307978A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AR, Rahul</creatorcontrib><creatorcontrib>Mani, Senthil Kk</creatorcontrib><creatorcontrib>Panwar, Naveen</creatorcontrib><creatorcontrib>Gantayat, Neelamadhav</creatorcontrib><creatorcontrib>Khare, Shreya</creatorcontrib><creatorcontrib>Sankaran, Anush</creatorcontrib><title>Multi-Modal Construction of Deep Learning Networks</title><description>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDyLc0pydT1zU9JzFFwzs8rLikqTS7JzM9TyE9TcElNLVDwSU0sysvMS1fwSy0pzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhhbGBuaW5haOhsbEqQIAW58s1w</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>AR, Rahul</creator><creator>Mani, Senthil Kk</creator><creator>Panwar, Naveen</creator><creator>Gantayat, Neelamadhav</creator><creator>Khare, Shreya</creator><creator>Sankaran, Anush</creator><scope>EVB</scope></search><sort><creationdate>20181025</creationdate><title>Multi-Modal Construction of Deep Learning Networks</title><author>AR, Rahul ; Mani, Senthil Kk ; Panwar, Naveen ; Gantayat, Neelamadhav ; Khare, Shreya ; Sankaran, Anush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018307978A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>AR, Rahul</creatorcontrib><creatorcontrib>Mani, Senthil Kk</creatorcontrib><creatorcontrib>Panwar, Naveen</creatorcontrib><creatorcontrib>Gantayat, Neelamadhav</creatorcontrib><creatorcontrib>Khare, Shreya</creatorcontrib><creatorcontrib>Sankaran, Anush</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AR, Rahul</au><au>Mani, Senthil Kk</au><au>Panwar, Naveen</au><au>Gantayat, Neelamadhav</au><au>Khare, Shreya</au><au>Sankaran, Anush</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-Modal Construction of Deep Learning Networks</title><date>2018-10-25</date><risdate>2018</risdate><abstract>Methods, systems, and computer program products for multi-modal construction of deep learning networks are provided herein. A computer-implemented method includes extracting, from user-provided multi-modal inputs, one or more items related to generating a deep learning network; generating a deep learning network model, wherein said generating comprises inferring multiple details attributed to the deep learning network model based on the one or more extracted items; creating an intermediate representation based on the deep learning network model, wherein the intermediate representation comprises (i) one or more items of data pertaining to the deep learning network model and (ii) one or more design details attributed to the deep learning network model; automatically converting the intermediate representation into source code; and outputting the source code to at least one user.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2018307978A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Multi-Modal Construction of Deep Learning Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AR,%20Rahul&rft.date=2018-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018307978A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true