COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE

Described technologies automatically detect computing system security attacks. Departure of occurrence distributions, which are based on leading digit(s) of digital item occurrence data, from model distributions that correspond to particular data sources, indicates a presence likelihood for particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: IWANIR, Elad, GABAEV, Yuri, TAMIR, Gal
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator IWANIR, Elad
GABAEV, Yuri
TAMIR, Gal
description Described technologies automatically detect computing system security attacks. Departure of occurrence distributions, which are based on leading digit(s) of digital item occurrence data, from model distributions that correspond to particular data sources, indicates a presence likelihood for particular attack types. Some model distributions exhibit Benford's Phenomenon. Described mechanisms detect security attack types such as ransomware, bitcoin mining, and others, using particular corresponding data sources such as file extensions, processor statistics, etc. Mechanisms detect security attacks without a captured baseline of healthy normal behavior, and without relying on malware code signatures. When an item occurrence distribution departs from a model distribution by at least a predefined degree, the technology electronically raises a security attack alert. Then countermeasures may be asserted for a possible type X security attack on the computing system. Countermeasures may include more computationally intensive tests for determining the precise extent or precise nature of an attack, for instance.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018278647A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018278647A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018278647A13</originalsourceid><addsrcrecordid>eNrjZLB39vcNCA1xDVIIdnUODfIMiVRwDAlxdPZWcHENcXUO8fT3UwgN9vRzV3DxDA4J8nQKBQu5uAY4BoWEBrnyMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjA0MLI3MLMxNzR0Nj4lQBAHcbLAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE</title><source>esp@cenet</source><creator>IWANIR, Elad ; GABAEV, Yuri ; TAMIR, Gal</creator><creatorcontrib>IWANIR, Elad ; GABAEV, Yuri ; TAMIR, Gal</creatorcontrib><description>Described technologies automatically detect computing system security attacks. Departure of occurrence distributions, which are based on leading digit(s) of digital item occurrence data, from model distributions that correspond to particular data sources, indicates a presence likelihood for particular attack types. Some model distributions exhibit Benford's Phenomenon. Described mechanisms detect security attack types such as ransomware, bitcoin mining, and others, using particular corresponding data sources such as file extensions, processor statistics, etc. Mechanisms detect security attacks without a captured baseline of healthy normal behavior, and without relying on malware code signatures. When an item occurrence distribution departs from a model distribution by at least a predefined degree, the technology electronically raises a security attack alert. Then countermeasures may be asserted for a possible type X security attack on the computing system. Countermeasures may include more computationally intensive tests for determining the precise extent or precise nature of an attack, for instance.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180927&amp;DB=EPODOC&amp;CC=US&amp;NR=2018278647A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180927&amp;DB=EPODOC&amp;CC=US&amp;NR=2018278647A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IWANIR, Elad</creatorcontrib><creatorcontrib>GABAEV, Yuri</creatorcontrib><creatorcontrib>TAMIR, Gal</creatorcontrib><title>COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE</title><description>Described technologies automatically detect computing system security attacks. Departure of occurrence distributions, which are based on leading digit(s) of digital item occurrence data, from model distributions that correspond to particular data sources, indicates a presence likelihood for particular attack types. Some model distributions exhibit Benford's Phenomenon. Described mechanisms detect security attack types such as ransomware, bitcoin mining, and others, using particular corresponding data sources such as file extensions, processor statistics, etc. Mechanisms detect security attacks without a captured baseline of healthy normal behavior, and without relying on malware code signatures. When an item occurrence distribution departs from a model distribution by at least a predefined degree, the technology electronically raises a security attack alert. Then countermeasures may be asserted for a possible type X security attack on the computing system. Countermeasures may include more computationally intensive tests for determining the precise extent or precise nature of an attack, for instance.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB39vcNCA1xDVIIdnUODfIMiVRwDAlxdPZWcHENcXUO8fT3UwgN9vRzV3DxDA4J8nQKBQu5uAY4BoWEBrnyMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjA0MLI3MLMxNzR0Nj4lQBAHcbLAQ</recordid><startdate>20180927</startdate><enddate>20180927</enddate><creator>IWANIR, Elad</creator><creator>GABAEV, Yuri</creator><creator>TAMIR, Gal</creator><scope>EVB</scope></search><sort><creationdate>20180927</creationdate><title>COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE</title><author>IWANIR, Elad ; GABAEV, Yuri ; TAMIR, Gal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018278647A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>IWANIR, Elad</creatorcontrib><creatorcontrib>GABAEV, Yuri</creatorcontrib><creatorcontrib>TAMIR, Gal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IWANIR, Elad</au><au>GABAEV, Yuri</au><au>TAMIR, Gal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE</title><date>2018-09-27</date><risdate>2018</risdate><abstract>Described technologies automatically detect computing system security attacks. Departure of occurrence distributions, which are based on leading digit(s) of digital item occurrence data, from model distributions that correspond to particular data sources, indicates a presence likelihood for particular attack types. Some model distributions exhibit Benford's Phenomenon. Described mechanisms detect security attack types such as ransomware, bitcoin mining, and others, using particular corresponding data sources such as file extensions, processor statistics, etc. Mechanisms detect security attacks without a captured baseline of healthy normal behavior, and without relying on malware code signatures. When an item occurrence distribution departs from a model distribution by at least a predefined degree, the technology electronically raises a security attack alert. Then countermeasures may be asserted for a possible type X security attack on the computing system. Countermeasures may include more computationally intensive tests for determining the precise extent or precise nature of an attack, for instance.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2018278647A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title COMPUTER SECURITY ATTACK DETECTION USING DISTRIBUTION DEPARTURE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IWANIR,%20Elad&rft.date=2018-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018278647A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true