DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES

The disclosure includes a method that receives a real-time image of a road from a camera sensor communicatively coupled to an onboard computer of a vehicle. The method includes dividing the real-time image into superpixels. The method includes merging the superpixels to form superpixel regions. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pillai, Preeti Jayagopi, Nomoto, Hirokazu, Oguchi, Kentaro, Yalla, Veeraganesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pillai, Preeti Jayagopi
Nomoto, Hirokazu
Oguchi, Kentaro
Yalla, Veeraganesh
description The disclosure includes a method that receives a real-time image of a road from a camera sensor communicatively coupled to an onboard computer of a vehicle. The method includes dividing the real-time image into superpixels. The method includes merging the superpixels to form superpixel regions. The method includes generating prior maps from a dataset of road scene images. The method includes drawing a set of bounding boxes where each bounding box surrounds one of the superpixel regions. The method includes comparing the bounding boxes in the set of bounding boxes to a road prior map to identify a road region in the real-time image. The method includes pruning bounding boxes from the set of bounding boxes to reduce the set to remaining bounding boxes. The method may include using a categorization module that identifies the presence of a road scene object in the remaining bounding boxes.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018173969A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018173969A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018173969A13</originalsourceid><addsrcrecordid>eNrjZNB1cQ1xdQ7x9HNXCPJ3dAl3jFTwd_ICigQrePopBLk6-uiGePq6Knj6Orq7BvMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQwtDc2NLM0tHQ2PiVAEAQAUmSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES</title><source>esp@cenet</source><creator>Pillai, Preeti Jayagopi ; Nomoto, Hirokazu ; Oguchi, Kentaro ; Yalla, Veeraganesh</creator><creatorcontrib>Pillai, Preeti Jayagopi ; Nomoto, Hirokazu ; Oguchi, Kentaro ; Yalla, Veeraganesh</creatorcontrib><description>The disclosure includes a method that receives a real-time image of a road from a camera sensor communicatively coupled to an onboard computer of a vehicle. The method includes dividing the real-time image into superpixels. The method includes merging the superpixels to form superpixel regions. The method includes generating prior maps from a dataset of road scene images. The method includes drawing a set of bounding boxes where each bounding box surrounds one of the superpixel regions. The method includes comparing the bounding boxes in the set of bounding boxes to a road prior map to identify a road region in the real-time image. The method includes pruning bounding boxes from the set of bounding boxes to reduce the set to remaining bounding boxes. The method may include using a categorization module that identifies the presence of a road scene object in the remaining bounding boxes.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180621&amp;DB=EPODOC&amp;CC=US&amp;NR=2018173969A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180621&amp;DB=EPODOC&amp;CC=US&amp;NR=2018173969A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pillai, Preeti Jayagopi</creatorcontrib><creatorcontrib>Nomoto, Hirokazu</creatorcontrib><creatorcontrib>Oguchi, Kentaro</creatorcontrib><creatorcontrib>Yalla, Veeraganesh</creatorcontrib><title>DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES</title><description>The disclosure includes a method that receives a real-time image of a road from a camera sensor communicatively coupled to an onboard computer of a vehicle. The method includes dividing the real-time image into superpixels. The method includes merging the superpixels to form superpixel regions. The method includes generating prior maps from a dataset of road scene images. The method includes drawing a set of bounding boxes where each bounding box surrounds one of the superpixel regions. The method includes comparing the bounding boxes in the set of bounding boxes to a road prior map to identify a road region in the real-time image. The method includes pruning bounding boxes from the set of bounding boxes to reduce the set to remaining bounding boxes. The method may include using a categorization module that identifies the presence of a road scene object in the remaining bounding boxes.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1cQ1xdQ7x9HNXCPJ3dAl3jFTwd_ICigQrePopBLk6-uiGePq6Knj6Orq7BvMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQwtDc2NLM0tHQ2PiVAEAQAUmSQ</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Pillai, Preeti Jayagopi</creator><creator>Nomoto, Hirokazu</creator><creator>Oguchi, Kentaro</creator><creator>Yalla, Veeraganesh</creator><scope>EVB</scope></search><sort><creationdate>20180621</creationdate><title>DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES</title><author>Pillai, Preeti Jayagopi ; Nomoto, Hirokazu ; Oguchi, Kentaro ; Yalla, Veeraganesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018173969A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pillai, Preeti Jayagopi</creatorcontrib><creatorcontrib>Nomoto, Hirokazu</creatorcontrib><creatorcontrib>Oguchi, Kentaro</creatorcontrib><creatorcontrib>Yalla, Veeraganesh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pillai, Preeti Jayagopi</au><au>Nomoto, Hirokazu</au><au>Oguchi, Kentaro</au><au>Yalla, Veeraganesh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES</title><date>2018-06-21</date><risdate>2018</risdate><abstract>The disclosure includes a method that receives a real-time image of a road from a camera sensor communicatively coupled to an onboard computer of a vehicle. The method includes dividing the real-time image into superpixels. The method includes merging the superpixels to form superpixel regions. The method includes generating prior maps from a dataset of road scene images. The method includes drawing a set of bounding boxes where each bounding box surrounds one of the superpixel regions. The method includes comparing the bounding boxes in the set of bounding boxes to a road prior map to identify a road region in the real-time image. The method includes pruning bounding boxes from the set of bounding boxes to reduce the set to remaining bounding boxes. The method may include using a categorization module that identifies the presence of a road scene object in the remaining bounding boxes.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2018173969A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title DETECTING ROADWAY OBJECTS IN REAL-TIME IMAGES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pillai,%20Preeti%20Jayagopi&rft.date=2018-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018173969A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true