OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION

Aspects extend to methods, systems, and computer program products for optimally pipelining result sets with fault tolerance in distributed query execution. Distributed computing jobs are optimized by dividing the distributed computing jobs into one or more bubbles for execution. Each bubble can be i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ekanayake Jaliya Nishantha, Li Ming, Ramakrishnan Raghunath, Guan Tao, Blakeley José A, Kwon Yongchul, Sun Jin, Friedman Marc T, Lin Haibo, Yin Zhicheng
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ekanayake Jaliya Nishantha
Li Ming
Ramakrishnan Raghunath
Guan Tao
Blakeley José A
Kwon Yongchul
Sun Jin
Friedman Marc T
Lin Haibo
Yin Zhicheng
description Aspects extend to methods, systems, and computer program products for optimally pipelining result sets with fault tolerance in distributed query execution. Distributed computing jobs are optimized by dividing the distributed computing jobs into one or more bubbles for execution. Each bubble can be independently executed, potentially in parallel with other bubbles, when resources to handle the bubble are available. Intra-bubble communication can be streamed between vertices within a bubble. Inter-bubble communication can be stored to durable storage. Bubbles provide a failure boundary for a job graph and re-executing a bubble along with storage of intermediate results in durable storage can be used to recover from failures. When a vertex inside a bubble fails, computation can resume by rescheduling the execution of the failed bubble from the durable inputs for that bubble. Durable storage provides a light-weight failover to handle non-deterministic behavior. Jobs can also leverage streaming to increase performance
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018075098A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018075098A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018075098A13</originalsourceid><addsrcrecordid>eNqNissKwjAQAHPxIOo_LHgWUkWsx5hu7UJM2mSDj0spEk-ihfr_SMEP8DQzMFMRXc10ohvZI9RUoyE7qscQDUNADnAmrqBUY7Mz6JXVCGShoMCeDpGxgCaivwJeUEcmZ-di8uieQ1r8OBPLEllXq9S_2zT03T290qeNYS2zXO62cp-rbPPf9QV9jzIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION</title><source>esp@cenet</source><creator>Ekanayake Jaliya Nishantha ; Li Ming ; Ramakrishnan Raghunath ; Guan Tao ; Blakeley José A ; Kwon Yongchul ; Sun Jin ; Friedman Marc T ; Lin Haibo ; Yin Zhicheng</creator><creatorcontrib>Ekanayake Jaliya Nishantha ; Li Ming ; Ramakrishnan Raghunath ; Guan Tao ; Blakeley José A ; Kwon Yongchul ; Sun Jin ; Friedman Marc T ; Lin Haibo ; Yin Zhicheng</creatorcontrib><description>Aspects extend to methods, systems, and computer program products for optimally pipelining result sets with fault tolerance in distributed query execution. Distributed computing jobs are optimized by dividing the distributed computing jobs into one or more bubbles for execution. Each bubble can be independently executed, potentially in parallel with other bubbles, when resources to handle the bubble are available. Intra-bubble communication can be streamed between vertices within a bubble. Inter-bubble communication can be stored to durable storage. Bubbles provide a failure boundary for a job graph and re-executing a bubble along with storage of intermediate results in durable storage can be used to recover from failures. When a vertex inside a bubble fails, computation can resume by rescheduling the execution of the failed bubble from the durable inputs for that bubble. Durable storage provides a light-weight failover to handle non-deterministic behavior. Jobs can also leverage streaming to increase performance</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180315&amp;DB=EPODOC&amp;CC=US&amp;NR=2018075098A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180315&amp;DB=EPODOC&amp;CC=US&amp;NR=2018075098A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ekanayake Jaliya Nishantha</creatorcontrib><creatorcontrib>Li Ming</creatorcontrib><creatorcontrib>Ramakrishnan Raghunath</creatorcontrib><creatorcontrib>Guan Tao</creatorcontrib><creatorcontrib>Blakeley José A</creatorcontrib><creatorcontrib>Kwon Yongchul</creatorcontrib><creatorcontrib>Sun Jin</creatorcontrib><creatorcontrib>Friedman Marc T</creatorcontrib><creatorcontrib>Lin Haibo</creatorcontrib><creatorcontrib>Yin Zhicheng</creatorcontrib><title>OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION</title><description>Aspects extend to methods, systems, and computer program products for optimally pipelining result sets with fault tolerance in distributed query execution. Distributed computing jobs are optimized by dividing the distributed computing jobs into one or more bubbles for execution. Each bubble can be independently executed, potentially in parallel with other bubbles, when resources to handle the bubble are available. Intra-bubble communication can be streamed between vertices within a bubble. Inter-bubble communication can be stored to durable storage. Bubbles provide a failure boundary for a job graph and re-executing a bubble along with storage of intermediate results in durable storage can be used to recover from failures. When a vertex inside a bubble fails, computation can resume by rescheduling the execution of the failed bubble from the durable inputs for that bubble. Durable storage provides a light-weight failover to handle non-deterministic behavior. Jobs can also leverage streaming to increase performance</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNissKwjAQAHPxIOo_LHgWUkWsx5hu7UJM2mSDj0spEk-ihfr_SMEP8DQzMFMRXc10ohvZI9RUoyE7qscQDUNADnAmrqBUY7Mz6JXVCGShoMCeDpGxgCaivwJeUEcmZ-di8uieQ1r8OBPLEllXq9S_2zT03T290qeNYS2zXO62cp-rbPPf9QV9jzIQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Ekanayake Jaliya Nishantha</creator><creator>Li Ming</creator><creator>Ramakrishnan Raghunath</creator><creator>Guan Tao</creator><creator>Blakeley José A</creator><creator>Kwon Yongchul</creator><creator>Sun Jin</creator><creator>Friedman Marc T</creator><creator>Lin Haibo</creator><creator>Yin Zhicheng</creator><scope>EVB</scope></search><sort><creationdate>20180315</creationdate><title>OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION</title><author>Ekanayake Jaliya Nishantha ; Li Ming ; Ramakrishnan Raghunath ; Guan Tao ; Blakeley José A ; Kwon Yongchul ; Sun Jin ; Friedman Marc T ; Lin Haibo ; Yin Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018075098A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ekanayake Jaliya Nishantha</creatorcontrib><creatorcontrib>Li Ming</creatorcontrib><creatorcontrib>Ramakrishnan Raghunath</creatorcontrib><creatorcontrib>Guan Tao</creatorcontrib><creatorcontrib>Blakeley José A</creatorcontrib><creatorcontrib>Kwon Yongchul</creatorcontrib><creatorcontrib>Sun Jin</creatorcontrib><creatorcontrib>Friedman Marc T</creatorcontrib><creatorcontrib>Lin Haibo</creatorcontrib><creatorcontrib>Yin Zhicheng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ekanayake Jaliya Nishantha</au><au>Li Ming</au><au>Ramakrishnan Raghunath</au><au>Guan Tao</au><au>Blakeley José A</au><au>Kwon Yongchul</au><au>Sun Jin</au><au>Friedman Marc T</au><au>Lin Haibo</au><au>Yin Zhicheng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION</title><date>2018-03-15</date><risdate>2018</risdate><abstract>Aspects extend to methods, systems, and computer program products for optimally pipelining result sets with fault tolerance in distributed query execution. Distributed computing jobs are optimized by dividing the distributed computing jobs into one or more bubbles for execution. Each bubble can be independently executed, potentially in parallel with other bubbles, when resources to handle the bubble are available. Intra-bubble communication can be streamed between vertices within a bubble. Inter-bubble communication can be stored to durable storage. Bubbles provide a failure boundary for a job graph and re-executing a bubble along with storage of intermediate results in durable storage can be used to recover from failures. When a vertex inside a bubble fails, computation can resume by rescheduling the execution of the failed bubble from the durable inputs for that bubble. Durable storage provides a light-weight failover to handle non-deterministic behavior. Jobs can also leverage streaming to increase performance</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2018075098A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title OPTIMIZING PIPELINING RESULT SETS WITH FAULT TOLERANCE IN DISTRIBUTED QUERY EXECUTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ekanayake%20Jaliya%20Nishantha&rft.date=2018-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018075098A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true