AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT
A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Saxena Rajesh K Bharti Harish Raval Kshitij K Choudhury Sanjib |
description | A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017371970A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017371970A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017371970A13</originalsourceid><addsrcrecordid>eNrjZPBzDA3x93UMcXVRCA7xD4r08fRzVXD29wtx9QtRCHb1cXUO8fT3U3D0c1EIDHX08QxxDPEMc1UAKvP29HNXcHIMBuoEKgBriQjhYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxuaGluYGjobGxKkCAASjL8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><source>esp@cenet</source><creator>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</creator><creatorcontrib>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</creatorcontrib><description>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171228&DB=EPODOC&CC=US&NR=2017371970A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171228&DB=EPODOC&CC=US&NR=2017371970A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Saxena Rajesh K</creatorcontrib><creatorcontrib>Bharti Harish</creatorcontrib><creatorcontrib>Raval Kshitij K</creatorcontrib><creatorcontrib>Choudhury Sanjib</creatorcontrib><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><description>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzDA3x93UMcXVRCA7xD4r08fRzVXD29wtx9QtRCHb1cXUO8fT3U3D0c1EIDHX08QxxDPEMc1UAKvP29HNXcHIMBuoEKgBriQjhYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxuaGluYGjobGxKkCAASjL8o</recordid><startdate>20171228</startdate><enddate>20171228</enddate><creator>Saxena Rajesh K</creator><creator>Bharti Harish</creator><creator>Raval Kshitij K</creator><creator>Choudhury Sanjib</creator><scope>EVB</scope></search><sort><creationdate>20171228</creationdate><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><author>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017371970A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Saxena Rajesh K</creatorcontrib><creatorcontrib>Bharti Harish</creatorcontrib><creatorcontrib>Raval Kshitij K</creatorcontrib><creatorcontrib>Choudhury Sanjib</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saxena Rajesh K</au><au>Bharti Harish</au><au>Raval Kshitij K</au><au>Choudhury Sanjib</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><date>2017-12-28</date><risdate>2017</risdate><abstract>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017371970A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Saxena%20Rajesh%20K&rft.date=2017-12-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017371970A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |