AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT

A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saxena Rajesh K, Bharti Harish, Raval Kshitij K, Choudhury Sanjib
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Saxena Rajesh K
Bharti Harish
Raval Kshitij K
Choudhury Sanjib
description A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017371970A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017371970A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017371970A13</originalsourceid><addsrcrecordid>eNrjZPBzDA3x93UMcXVRCA7xD4r08fRzVXD29wtx9QtRCHb1cXUO8fT3U3D0c1EIDHX08QxxDPEMc1UAKvP29HNXcHIMBuoEKgBriQjhYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxuaGluYGjobGxKkCAASjL8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><source>esp@cenet</source><creator>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</creator><creatorcontrib>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</creatorcontrib><description>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171228&amp;DB=EPODOC&amp;CC=US&amp;NR=2017371970A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171228&amp;DB=EPODOC&amp;CC=US&amp;NR=2017371970A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Saxena Rajesh K</creatorcontrib><creatorcontrib>Bharti Harish</creatorcontrib><creatorcontrib>Raval Kshitij K</creatorcontrib><creatorcontrib>Choudhury Sanjib</creatorcontrib><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><description>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzDA3x93UMcXVRCA7xD4r08fRzVXD29wtx9QtRCHb1cXUO8fT3U3D0c1EIDHX08QxxDPEMc1UAKvP29HNXcHIMBuoEKgBriQjhYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxuaGluYGjobGxKkCAASjL8o</recordid><startdate>20171228</startdate><enddate>20171228</enddate><creator>Saxena Rajesh K</creator><creator>Bharti Harish</creator><creator>Raval Kshitij K</creator><creator>Choudhury Sanjib</creator><scope>EVB</scope></search><sort><creationdate>20171228</creationdate><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><author>Saxena Rajesh K ; Bharti Harish ; Raval Kshitij K ; Choudhury Sanjib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017371970A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Saxena Rajesh K</creatorcontrib><creatorcontrib>Bharti Harish</creatorcontrib><creatorcontrib>Raval Kshitij K</creatorcontrib><creatorcontrib>Choudhury Sanjib</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saxena Rajesh K</au><au>Bharti Harish</au><au>Raval Kshitij K</au><au>Choudhury Sanjib</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT</title><date>2017-12-28</date><risdate>2017</risdate><abstract>A huge volume of unstructured content is available on the internet. Social media websites, news outlets, subject matter expert sites, forums, government organization sites, non-government organization sites, etc., collectively provide a rich source of raw material for any kind of story writing, for example, for movies, novels, television, etc. In some embodiments of the present invention, content is intelligently searched from diverse sources. Embodiments of the present invention make use of such unstructured content, to provide raw material upon which to base a cohesive and appealing story, in part by applying graphing theory to: (i) represent content gathered in the search as a graph, with each element of content assigned to a node of the graph; (ii) qualitatively link the nodes; and/or (iii) identify important nodes which potentially become central to a storyline.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017371970A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title AUTOMATED STORYLINE CONTENT SELECTION AND QUALITATIVE LINKING BASED ON CONTEXT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Saxena%20Rajesh%20K&rft.date=2017-12-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017371970A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true