Deployment of Machine Learning Models for Discernment of Threats

A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rajamani Raj, Song Renee, Ipsen Kiefer, Sohn Alice, Rusell Braden, Harms Kristopher William
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rajamani Raj
Song Renee
Ipsen Kiefer
Sohn Alice
Rusell Braden
Harms Kristopher William
description A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an action based on the analyzing. The analyzing includes comparing a human-generated classification status for a file, a first model version status that reflects classification by the first version of the machine learning threat discernment model, and a second model version status that reflects classification by the second version of the machine learning threat discernment model. The analyzing can also include allowing the human-generated classification status to dominate when it is available.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017357807A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017357807A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017357807A13</originalsourceid><addsrcrecordid>eNrjZHBwSS3Iya_MTc0rUchPU_BNTM7IzEtV8ElNLMrLzEtX8M1PSc0pVkjLL1JwySxOTi3KgykNyShKTSwp5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaG5sam5hYG5o6GxsSpAgBbRzHd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deployment of Machine Learning Models for Discernment of Threats</title><source>esp@cenet</source><creator>Rajamani Raj ; Song Renee ; Ipsen Kiefer ; Sohn Alice ; Rusell Braden ; Harms Kristopher William</creator><creatorcontrib>Rajamani Raj ; Song Renee ; Ipsen Kiefer ; Sohn Alice ; Rusell Braden ; Harms Kristopher William</creatorcontrib><description>A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an action based on the analyzing. The analyzing includes comparing a human-generated classification status for a file, a first model version status that reflects classification by the first version of the machine learning threat discernment model, and a second model version status that reflects classification by the second version of the machine learning threat discernment model. The analyzing can also include allowing the human-generated classification status to dominate when it is available.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171214&amp;DB=EPODOC&amp;CC=US&amp;NR=2017357807A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171214&amp;DB=EPODOC&amp;CC=US&amp;NR=2017357807A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rajamani Raj</creatorcontrib><creatorcontrib>Song Renee</creatorcontrib><creatorcontrib>Ipsen Kiefer</creatorcontrib><creatorcontrib>Sohn Alice</creatorcontrib><creatorcontrib>Rusell Braden</creatorcontrib><creatorcontrib>Harms Kristopher William</creatorcontrib><title>Deployment of Machine Learning Models for Discernment of Threats</title><description>A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an action based on the analyzing. The analyzing includes comparing a human-generated classification status for a file, a first model version status that reflects classification by the first version of the machine learning threat discernment model, and a second model version status that reflects classification by the second version of the machine learning threat discernment model. The analyzing can also include allowing the human-generated classification status to dominate when it is available.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwSS3Iya_MTc0rUchPU_BNTM7IzEtV8ElNLMrLzEtX8M1PSc0pVkjLL1JwySxOTi3KgykNyShKTSwp5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaG5sam5hYG5o6GxsSpAgBbRzHd</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Rajamani Raj</creator><creator>Song Renee</creator><creator>Ipsen Kiefer</creator><creator>Sohn Alice</creator><creator>Rusell Braden</creator><creator>Harms Kristopher William</creator><scope>EVB</scope></search><sort><creationdate>20171214</creationdate><title>Deployment of Machine Learning Models for Discernment of Threats</title><author>Rajamani Raj ; Song Renee ; Ipsen Kiefer ; Sohn Alice ; Rusell Braden ; Harms Kristopher William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017357807A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajamani Raj</creatorcontrib><creatorcontrib>Song Renee</creatorcontrib><creatorcontrib>Ipsen Kiefer</creatorcontrib><creatorcontrib>Sohn Alice</creatorcontrib><creatorcontrib>Rusell Braden</creatorcontrib><creatorcontrib>Harms Kristopher William</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajamani Raj</au><au>Song Renee</au><au>Ipsen Kiefer</au><au>Sohn Alice</au><au>Rusell Braden</au><au>Harms Kristopher William</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deployment of Machine Learning Models for Discernment of Threats</title><date>2017-12-14</date><risdate>2017</risdate><abstract>A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an action based on the analyzing. The analyzing includes comparing a human-generated classification status for a file, a first model version status that reflects classification by the first version of the machine learning threat discernment model, and a second model version status that reflects classification by the second version of the machine learning threat discernment model. The analyzing can also include allowing the human-generated classification status to dominate when it is available.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017357807A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Deployment of Machine Learning Models for Discernment of Threats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rajamani%20Raj&rft.date=2017-12-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017357807A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true