CROSS-CHANNEL RECOMMENDATION PROCESSING

Cross-channel and cross-source data are aggregated into an aggregated data store. Custom segmentation is generated from the aggregated data. A campaign is monitored for the custom segmentation with successes and failures provided as dynamic feedback to a machine learning process that dynamically adj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leung Ronald Chiwai, Turner David Allen, Tripathi Pragya, Licht Yehoshua Zvi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Leung Ronald Chiwai
Turner David Allen
Tripathi Pragya
Licht Yehoshua Zvi
description Cross-channel and cross-source data are aggregated into an aggregated data store. Custom segmentation is generated from the aggregated data. A campaign is monitored for the custom segmentation with successes and failures provided as dynamic feedback to a machine learning process that dynamically adjusts the segmentation and the campaign for optimal performance. In an embodiment, a final recommendation is provided identifying a final optimal segmentation and campaign.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017316435A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017316435A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017316435A13</originalsourceid><addsrcrecordid>eNrjZFB3DvIPDtZ19nD083P1UQhydfb39XX1c3EM8fT3UwgI8nd2DQ729HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxoZmJsamjobGxKkCAJC8JQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CROSS-CHANNEL RECOMMENDATION PROCESSING</title><source>esp@cenet</source><creator>Leung Ronald Chiwai ; Turner David Allen ; Tripathi Pragya ; Licht Yehoshua Zvi</creator><creatorcontrib>Leung Ronald Chiwai ; Turner David Allen ; Tripathi Pragya ; Licht Yehoshua Zvi</creatorcontrib><description>Cross-channel and cross-source data are aggregated into an aggregated data store. Custom segmentation is generated from the aggregated data. A campaign is monitored for the custom segmentation with successes and failures provided as dynamic feedback to a machine learning process that dynamically adjusts the segmentation and the campaign for optimal performance. In an embodiment, a final recommendation is provided identifying a final optimal segmentation and campaign.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171102&amp;DB=EPODOC&amp;CC=US&amp;NR=2017316435A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171102&amp;DB=EPODOC&amp;CC=US&amp;NR=2017316435A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Leung Ronald Chiwai</creatorcontrib><creatorcontrib>Turner David Allen</creatorcontrib><creatorcontrib>Tripathi Pragya</creatorcontrib><creatorcontrib>Licht Yehoshua Zvi</creatorcontrib><title>CROSS-CHANNEL RECOMMENDATION PROCESSING</title><description>Cross-channel and cross-source data are aggregated into an aggregated data store. Custom segmentation is generated from the aggregated data. A campaign is monitored for the custom segmentation with successes and failures provided as dynamic feedback to a machine learning process that dynamically adjusts the segmentation and the campaign for optimal performance. In an embodiment, a final recommendation is provided identifying a final optimal segmentation and campaign.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3DvIPDtZ19nD083P1UQhydfb39XX1c3EM8fT3UwgI8nd2DQ729HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmxoZmJsamjobGxKkCAJC8JQQ</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Leung Ronald Chiwai</creator><creator>Turner David Allen</creator><creator>Tripathi Pragya</creator><creator>Licht Yehoshua Zvi</creator><scope>EVB</scope></search><sort><creationdate>20171102</creationdate><title>CROSS-CHANNEL RECOMMENDATION PROCESSING</title><author>Leung Ronald Chiwai ; Turner David Allen ; Tripathi Pragya ; Licht Yehoshua Zvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017316435A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Leung Ronald Chiwai</creatorcontrib><creatorcontrib>Turner David Allen</creatorcontrib><creatorcontrib>Tripathi Pragya</creatorcontrib><creatorcontrib>Licht Yehoshua Zvi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leung Ronald Chiwai</au><au>Turner David Allen</au><au>Tripathi Pragya</au><au>Licht Yehoshua Zvi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CROSS-CHANNEL RECOMMENDATION PROCESSING</title><date>2017-11-02</date><risdate>2017</risdate><abstract>Cross-channel and cross-source data are aggregated into an aggregated data store. Custom segmentation is generated from the aggregated data. A campaign is monitored for the custom segmentation with successes and failures provided as dynamic feedback to a machine learning process that dynamically adjusts the segmentation and the campaign for optimal performance. In an embodiment, a final recommendation is provided identifying a final optimal segmentation and campaign.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017316435A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title CROSS-CHANNEL RECOMMENDATION PROCESSING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Leung%20Ronald%20Chiwai&rft.date=2017-11-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017316435A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true