MODULAR DEEP LEARNING MODEL
The technology described herein uses a modular model to process speech. A deep learning based acoustic model comprises a stack of different types of neural network layers. The sub-modules of a deep learning based acoustic model can be used to represent distinct non-phonetic acoustic factors, such as...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KUMAR Kshitiz HUANG Yan KALGAONKAR Kaustubh Prakash GONG Yifan LIU Chaojun |
description | The technology described herein uses a modular model to process speech. A deep learning based acoustic model comprises a stack of different types of neural network layers. The sub-modules of a deep learning based acoustic model can be used to represent distinct non-phonetic acoustic factors, such as accent origins (e.g. native, non-native), speech channels (e.g. mobile, bluetooth, desktop etc.), speech application scenario (e.g. voice search, short message dictation etc.), and speaker variation (e.g. individual speakers or clustered speakers), etc. The technology described herein uses certain sub-modules in a first context and a second group of sub-modules in a second context. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017256254A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017256254A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017256254A13</originalsourceid><addsrcrecordid>eNrjZJD29XcJ9XEMUnBxdQ1Q8HF1DPLz9HNXAIq6-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQ3MjUzMjUxNHQ2PiVAEAwuUhTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MODULAR DEEP LEARNING MODEL</title><source>esp@cenet</source><creator>KUMAR Kshitiz ; HUANG Yan ; KALGAONKAR Kaustubh Prakash ; GONG Yifan ; LIU Chaojun</creator><creatorcontrib>KUMAR Kshitiz ; HUANG Yan ; KALGAONKAR Kaustubh Prakash ; GONG Yifan ; LIU Chaojun</creatorcontrib><description>The technology described herein uses a modular model to process speech. A deep learning based acoustic model comprises a stack of different types of neural network layers. The sub-modules of a deep learning based acoustic model can be used to represent distinct non-phonetic acoustic factors, such as accent origins (e.g. native, non-native), speech channels (e.g. mobile, bluetooth, desktop etc.), speech application scenario (e.g. voice search, short message dictation etc.), and speaker variation (e.g. individual speakers or clustered speakers), etc. The technology described herein uses certain sub-modules in a first context and a second group of sub-modules in a second context.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170907&DB=EPODOC&CC=US&NR=2017256254A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170907&DB=EPODOC&CC=US&NR=2017256254A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUMAR Kshitiz</creatorcontrib><creatorcontrib>HUANG Yan</creatorcontrib><creatorcontrib>KALGAONKAR Kaustubh Prakash</creatorcontrib><creatorcontrib>GONG Yifan</creatorcontrib><creatorcontrib>LIU Chaojun</creatorcontrib><title>MODULAR DEEP LEARNING MODEL</title><description>The technology described herein uses a modular model to process speech. A deep learning based acoustic model comprises a stack of different types of neural network layers. The sub-modules of a deep learning based acoustic model can be used to represent distinct non-phonetic acoustic factors, such as accent origins (e.g. native, non-native), speech channels (e.g. mobile, bluetooth, desktop etc.), speech application scenario (e.g. voice search, short message dictation etc.), and speaker variation (e.g. individual speakers or clustered speakers), etc. The technology described herein uses certain sub-modules in a first context and a second group of sub-modules in a second context.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJD29XcJ9XEMUnBxdQ1Q8HF1DPLz9HNXAIq6-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQ3MjUzMjUxNHQ2PiVAEAwuUhTQ</recordid><startdate>20170907</startdate><enddate>20170907</enddate><creator>KUMAR Kshitiz</creator><creator>HUANG Yan</creator><creator>KALGAONKAR Kaustubh Prakash</creator><creator>GONG Yifan</creator><creator>LIU Chaojun</creator><scope>EVB</scope></search><sort><creationdate>20170907</creationdate><title>MODULAR DEEP LEARNING MODEL</title><author>KUMAR Kshitiz ; HUANG Yan ; KALGAONKAR Kaustubh Prakash ; GONG Yifan ; LIU Chaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017256254A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>KUMAR Kshitiz</creatorcontrib><creatorcontrib>HUANG Yan</creatorcontrib><creatorcontrib>KALGAONKAR Kaustubh Prakash</creatorcontrib><creatorcontrib>GONG Yifan</creatorcontrib><creatorcontrib>LIU Chaojun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUMAR Kshitiz</au><au>HUANG Yan</au><au>KALGAONKAR Kaustubh Prakash</au><au>GONG Yifan</au><au>LIU Chaojun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MODULAR DEEP LEARNING MODEL</title><date>2017-09-07</date><risdate>2017</risdate><abstract>The technology described herein uses a modular model to process speech. A deep learning based acoustic model comprises a stack of different types of neural network layers. The sub-modules of a deep learning based acoustic model can be used to represent distinct non-phonetic acoustic factors, such as accent origins (e.g. native, non-native), speech channels (e.g. mobile, bluetooth, desktop etc.), speech application scenario (e.g. voice search, short message dictation etc.), and speaker variation (e.g. individual speakers or clustered speakers), etc. The technology described herein uses certain sub-modules in a first context and a second group of sub-modules in a second context.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017256254A1 |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | MODULAR DEEP LEARNING MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUMAR%20Kshitiz&rft.date=2017-09-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017256254A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |