ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS
Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system gene...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kalyanpur Aditya A Boguraev Branimir K Patwardhan Siddharth A Chu-Carroll Jennifer Murdock, IV James W McClosky David J |
description | Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017193088A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017193088A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017193088A13</originalsourceid><addsrcrecordid>eNrjZHBw9Qtx9PTxBVIK3n7-4T6uLu6uCk6Owa4Knn4Kfo4hoUGOPgo-jn7uoY5AiYAgf2fX4GBPP3eF4MjgEFffYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgaG5oaWxgYeFoaEycKgBtjyvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><source>esp@cenet</source><creator>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</creator><creatorcontrib>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</creatorcontrib><description>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170706&DB=EPODOC&CC=US&NR=2017193088A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170706&DB=EPODOC&CC=US&NR=2017193088A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kalyanpur Aditya A</creatorcontrib><creatorcontrib>Boguraev Branimir K</creatorcontrib><creatorcontrib>Patwardhan Siddharth A</creatorcontrib><creatorcontrib>Chu-Carroll Jennifer</creatorcontrib><creatorcontrib>Murdock, IV James W</creatorcontrib><creatorcontrib>McClosky David J</creatorcontrib><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><description>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBw9Qtx9PTxBVIK3n7-4T6uLu6uCk6Owa4Knn4Kfo4hoUGOPgo-jn7uoY5AiYAgf2fX4GBPP3eF4MjgEFffYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgaG5oaWxgYeFoaEycKgBtjyvc</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Kalyanpur Aditya A</creator><creator>Boguraev Branimir K</creator><creator>Patwardhan Siddharth A</creator><creator>Chu-Carroll Jennifer</creator><creator>Murdock, IV James W</creator><creator>McClosky David J</creator><scope>EVB</scope></search><sort><creationdate>20170706</creationdate><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><author>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017193088A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalyanpur Aditya A</creatorcontrib><creatorcontrib>Boguraev Branimir K</creatorcontrib><creatorcontrib>Patwardhan Siddharth A</creatorcontrib><creatorcontrib>Chu-Carroll Jennifer</creatorcontrib><creatorcontrib>Murdock, IV James W</creatorcontrib><creatorcontrib>McClosky David J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalyanpur Aditya A</au><au>Boguraev Branimir K</au><au>Patwardhan Siddharth A</au><au>Chu-Carroll Jennifer</au><au>Murdock, IV James W</au><au>McClosky David J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><date>2017-07-06</date><risdate>2017</risdate><abstract>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017193088A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kalyanpur%20Aditya%20A&rft.date=2017-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017193088A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |