ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS

Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalyanpur Aditya A, Boguraev Branimir K, Patwardhan Siddharth A, Chu-Carroll Jennifer, Murdock, IV James W, McClosky David J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kalyanpur Aditya A
Boguraev Branimir K
Patwardhan Siddharth A
Chu-Carroll Jennifer
Murdock, IV James W
McClosky David J
description Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017193088A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017193088A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017193088A13</originalsourceid><addsrcrecordid>eNrjZHBw9Qtx9PTxBVIK3n7-4T6uLu6uCk6Owa4Knn4Kfo4hoUGOPgo-jn7uoY5AiYAgf2fX4GBPP3eF4MjgEFffYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgaG5oaWxgYeFoaEycKgBtjyvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><source>esp@cenet</source><creator>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</creator><creatorcontrib>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</creatorcontrib><description>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170706&amp;DB=EPODOC&amp;CC=US&amp;NR=2017193088A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170706&amp;DB=EPODOC&amp;CC=US&amp;NR=2017193088A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kalyanpur Aditya A</creatorcontrib><creatorcontrib>Boguraev Branimir K</creatorcontrib><creatorcontrib>Patwardhan Siddharth A</creatorcontrib><creatorcontrib>Chu-Carroll Jennifer</creatorcontrib><creatorcontrib>Murdock, IV James W</creatorcontrib><creatorcontrib>McClosky David J</creatorcontrib><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><description>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBw9Qtx9PTxBVIK3n7-4T6uLu6uCk6Owa4Knn4Kfo4hoUGOPgo-jn7uoY5AiYAgf2fX4GBPP3eF4MjgEFffYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgaG5oaWxgYeFoaEycKgBtjyvc</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Kalyanpur Aditya A</creator><creator>Boguraev Branimir K</creator><creator>Patwardhan Siddharth A</creator><creator>Chu-Carroll Jennifer</creator><creator>Murdock, IV James W</creator><creator>McClosky David J</creator><scope>EVB</scope></search><sort><creationdate>20170706</creationdate><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><author>Kalyanpur Aditya A ; Boguraev Branimir K ; Patwardhan Siddharth A ; Chu-Carroll Jennifer ; Murdock, IV James W ; McClosky David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017193088A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalyanpur Aditya A</creatorcontrib><creatorcontrib>Boguraev Branimir K</creatorcontrib><creatorcontrib>Patwardhan Siddharth A</creatorcontrib><creatorcontrib>Chu-Carroll Jennifer</creatorcontrib><creatorcontrib>Murdock, IV James W</creatorcontrib><creatorcontrib>McClosky David J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalyanpur Aditya A</au><au>Boguraev Branimir K</au><au>Patwardhan Siddharth A</au><au>Chu-Carroll Jennifer</au><au>Murdock, IV James W</au><au>McClosky David J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS</title><date>2017-07-06</date><risdate>2017</risdate><abstract>Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017193088A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ENTAILMENT KNOWLEDGE BASE IN NATURAL LANGUAGE PROCESSING SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kalyanpur%20Aditya%20A&rft.date=2017-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017193088A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true