IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS
A mechanism is provided for identifying patterns of a set of software applications instances from their documents. The computer-implemented method begins with constructing different attribute vector types using a knowledge ontology. The knowledge ontology captures semantics based on keywords associa...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SARKAR Soumitra DENG Yu MAHINDRU Ruchi RAMASAMY Harigovind Venkatraj KOFKIN-HANSEN Simon J MOSS Christopher IONESCU Theodor Razvan WANG Long SMITH Richard Christopher |
description | A mechanism is provided for identifying patterns of a set of software applications instances from their documents. The computer-implemented method begins with constructing different attribute vector types using a knowledge ontology. The knowledge ontology captures semantics based on keywords associated with resource attributes derived from one or more documents related to at least a portion of these software application instances. A knowledge base is built from the attribute vector types and the documents of these application instances. These are merged into the knowledge base with the knowledge base previously built from previous software application instances. Analytics are performed on the knowledge base to identify at least one of common patterns of deployments, configurations, or other attribute vector types, or a combination thereof. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017193021A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017193021A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017193021A13</originalsourceid><addsrcrecordid>eNrjZDDzdHH1C_F0i_T0c1cIcAwJcQ3yC1bwd1NwVAh2DQExgv3dQsIdg1wVHAMCfDydHUM8_f2CeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGhuaGlsYGRoaOhMXGqALbqKNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS</title><source>esp@cenet</source><creator>SARKAR Soumitra ; DENG Yu ; MAHINDRU Ruchi ; RAMASAMY Harigovind Venkatraj ; KOFKIN-HANSEN Simon J ; MOSS Christopher ; IONESCU Theodor Razvan ; WANG Long ; SMITH Richard Christopher</creator><creatorcontrib>SARKAR Soumitra ; DENG Yu ; MAHINDRU Ruchi ; RAMASAMY Harigovind Venkatraj ; KOFKIN-HANSEN Simon J ; MOSS Christopher ; IONESCU Theodor Razvan ; WANG Long ; SMITH Richard Christopher</creatorcontrib><description>A mechanism is provided for identifying patterns of a set of software applications instances from their documents. The computer-implemented method begins with constructing different attribute vector types using a knowledge ontology. The knowledge ontology captures semantics based on keywords associated with resource attributes derived from one or more documents related to at least a portion of these software application instances. A knowledge base is built from the attribute vector types and the documents of these application instances. These are merged into the knowledge base with the knowledge base previously built from previous software application instances. Analytics are performed on the knowledge base to identify at least one of common patterns of deployments, configurations, or other attribute vector types, or a combination thereof.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170706&DB=EPODOC&CC=US&NR=2017193021A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170706&DB=EPODOC&CC=US&NR=2017193021A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SARKAR Soumitra</creatorcontrib><creatorcontrib>DENG Yu</creatorcontrib><creatorcontrib>MAHINDRU Ruchi</creatorcontrib><creatorcontrib>RAMASAMY Harigovind Venkatraj</creatorcontrib><creatorcontrib>KOFKIN-HANSEN Simon J</creatorcontrib><creatorcontrib>MOSS Christopher</creatorcontrib><creatorcontrib>IONESCU Theodor Razvan</creatorcontrib><creatorcontrib>WANG Long</creatorcontrib><creatorcontrib>SMITH Richard Christopher</creatorcontrib><title>IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS</title><description>A mechanism is provided for identifying patterns of a set of software applications instances from their documents. The computer-implemented method begins with constructing different attribute vector types using a knowledge ontology. The knowledge ontology captures semantics based on keywords associated with resource attributes derived from one or more documents related to at least a portion of these software application instances. A knowledge base is built from the attribute vector types and the documents of these application instances. These are merged into the knowledge base with the knowledge base previously built from previous software application instances. Analytics are performed on the knowledge base to identify at least one of common patterns of deployments, configurations, or other attribute vector types, or a combination thereof.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDzdHH1C_F0i_T0c1cIcAwJcQ3yC1bwd1NwVAh2DQExgv3dQsIdg1wVHAMCfDydHUM8_f2CeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGhuaGlsYGRoaOhMXGqALbqKNk</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>SARKAR Soumitra</creator><creator>DENG Yu</creator><creator>MAHINDRU Ruchi</creator><creator>RAMASAMY Harigovind Venkatraj</creator><creator>KOFKIN-HANSEN Simon J</creator><creator>MOSS Christopher</creator><creator>IONESCU Theodor Razvan</creator><creator>WANG Long</creator><creator>SMITH Richard Christopher</creator><scope>EVB</scope></search><sort><creationdate>20170706</creationdate><title>IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS</title><author>SARKAR Soumitra ; DENG Yu ; MAHINDRU Ruchi ; RAMASAMY Harigovind Venkatraj ; KOFKIN-HANSEN Simon J ; MOSS Christopher ; IONESCU Theodor Razvan ; WANG Long ; SMITH Richard Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017193021A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SARKAR Soumitra</creatorcontrib><creatorcontrib>DENG Yu</creatorcontrib><creatorcontrib>MAHINDRU Ruchi</creatorcontrib><creatorcontrib>RAMASAMY Harigovind Venkatraj</creatorcontrib><creatorcontrib>KOFKIN-HANSEN Simon J</creatorcontrib><creatorcontrib>MOSS Christopher</creatorcontrib><creatorcontrib>IONESCU Theodor Razvan</creatorcontrib><creatorcontrib>WANG Long</creatorcontrib><creatorcontrib>SMITH Richard Christopher</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SARKAR Soumitra</au><au>DENG Yu</au><au>MAHINDRU Ruchi</au><au>RAMASAMY Harigovind Venkatraj</au><au>KOFKIN-HANSEN Simon J</au><au>MOSS Christopher</au><au>IONESCU Theodor Razvan</au><au>WANG Long</au><au>SMITH Richard Christopher</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS</title><date>2017-07-06</date><risdate>2017</risdate><abstract>A mechanism is provided for identifying patterns of a set of software applications instances from their documents. The computer-implemented method begins with constructing different attribute vector types using a knowledge ontology. The knowledge ontology captures semantics based on keywords associated with resource attributes derived from one or more documents related to at least a portion of these software application instances. A knowledge base is built from the attribute vector types and the documents of these application instances. These are merged into the knowledge base with the knowledge base previously built from previous software application instances. Analytics are performed on the knowledge base to identify at least one of common patterns of deployments, configurations, or other attribute vector types, or a combination thereof.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017193021A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | IDENTIFYING PATTERNS OF A SET OF SOFTWARE APPLICATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SARKAR%20Soumitra&rft.date=2017-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017193021A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |