GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING
A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under un...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | RHODES Bradley J GARAGIC Denis |
description | A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017161638A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017161638A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017161638A13</originalsourceid><addsrcrecordid>eNqNzEEKwjAQheFuXIh6hwHXgrFQ3U7TSR1okpJMwY2UInElWqj3xwoewNXjg8e_zK41OQqsoQ2-xJIbjjIL29kXtigE2tu2ExT2DhtgZyiQ0wTWV9SA8QGiBELLroYKBb8pTTHOXmeL-_CY0ua3q2xrSPR5l8ZXn6ZxuKVnevddPOzVURWqyE-o8v9eH-8yM_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><source>esp@cenet</source><creator>RHODES Bradley J ; GARAGIC Denis</creator><creatorcontrib>RHODES Bradley J ; GARAGIC Denis</creatorcontrib><description>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170608&DB=EPODOC&CC=US&NR=2017161638A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170608&DB=EPODOC&CC=US&NR=2017161638A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RHODES Bradley J</creatorcontrib><creatorcontrib>GARAGIC Denis</creatorcontrib><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><description>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzEEKwjAQheFuXIh6hwHXgrFQ3U7TSR1okpJMwY2UInElWqj3xwoewNXjg8e_zK41OQqsoQ2-xJIbjjIL29kXtigE2tu2ExT2DhtgZyiQ0wTWV9SA8QGiBELLroYKBb8pTTHOXmeL-_CY0ua3q2xrSPR5l8ZXn6ZxuKVnevddPOzVURWqyE-o8v9eH-8yM_Q</recordid><startdate>20170608</startdate><enddate>20170608</enddate><creator>RHODES Bradley J</creator><creator>GARAGIC Denis</creator><scope>EVB</scope></search><sort><creationdate>20170608</creationdate><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><author>RHODES Bradley J ; GARAGIC Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017161638A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>RHODES Bradley J</creatorcontrib><creatorcontrib>GARAGIC Denis</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RHODES Bradley J</au><au>GARAGIC Denis</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><date>2017-06-08</date><risdate>2017</risdate><abstract>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017161638A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RHODES%20Bradley%20J&rft.date=2017-06-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017161638A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |