GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING

A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RHODES Bradley J, GARAGIC Denis
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RHODES Bradley J
GARAGIC Denis
description A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017161638A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017161638A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017161638A13</originalsourceid><addsrcrecordid>eNqNzEEKwjAQheFuXIh6hwHXgrFQ3U7TSR1okpJMwY2UInElWqj3xwoewNXjg8e_zK41OQqsoQ2-xJIbjjIL29kXtigE2tu2ExT2DhtgZyiQ0wTWV9SA8QGiBELLroYKBb8pTTHOXmeL-_CY0ua3q2xrSPR5l8ZXn6ZxuKVnevddPOzVURWqyE-o8v9eH-8yM_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><source>esp@cenet</source><creator>RHODES Bradley J ; GARAGIC Denis</creator><creatorcontrib>RHODES Bradley J ; GARAGIC Denis</creatorcontrib><description>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170608&amp;DB=EPODOC&amp;CC=US&amp;NR=2017161638A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170608&amp;DB=EPODOC&amp;CC=US&amp;NR=2017161638A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RHODES Bradley J</creatorcontrib><creatorcontrib>GARAGIC Denis</creatorcontrib><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><description>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzEEKwjAQheFuXIh6hwHXgrFQ3U7TSR1okpJMwY2UInElWqj3xwoewNXjg8e_zK41OQqsoQ2-xJIbjjIL29kXtigE2tu2ExT2DhtgZyiQ0wTWV9SA8QGiBELLroYKBb8pTTHOXmeL-_CY0ua3q2xrSPR5l8ZXn6ZxuKVnevddPOzVURWqyE-o8v9eH-8yM_Q</recordid><startdate>20170608</startdate><enddate>20170608</enddate><creator>RHODES Bradley J</creator><creator>GARAGIC Denis</creator><scope>EVB</scope></search><sort><creationdate>20170608</creationdate><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><author>RHODES Bradley J ; GARAGIC Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017161638A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>RHODES Bradley J</creatorcontrib><creatorcontrib>GARAGIC Denis</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RHODES Bradley J</au><au>GARAGIC Denis</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING</title><date>2017-06-08</date><risdate>2017</risdate><abstract>A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017161638A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title GENERIC PROBABILISTIC APPROXIMATE COMPUTATIONAL INFERENCE MODEL FOR STREAMING DATA PROCESSING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RHODES%20Bradley%20J&rft.date=2017-06-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017161638A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true