Colour-Z: Low-D Loading to High-D Processing

The monitor may be a physical computer monitor, television, audio/video communication device, or perspective. The camera typically uses photoreceptors to load monitor data into the camera Processor (3). The camera's output is handled by the processor and may also be characterized by Post-Proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karlstetter Ronnie Charles, Hartling Derek John
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The monitor may be a physical computer monitor, television, audio/video communication device, or perspective. The camera typically uses photoreceptors to load monitor data into the camera Processor (3). The camera's output is handled by the processor and may also be characterized by Post-Processing (4), ultimately providing very high frame-rates for software applications involving rich real-time processing. During signal handling, feed-forward and feedback may dramatically enhance computational power (i.e. algorithms can be written that take advantage of the depth dimension, and signal progression analogous to depth in traditional circuit design may be accomplished-all without independent gating hardware). Post-processing may consist of a programming interface for users to communicate with the camera/processor to interpret radiation or particulate of useful character absorbed by the Camera (3), while in accordance to (dynamic/static) assigned values, functions, programs, formulae, or any combinations of these loaded/defined in the Processor (3) and in Post-Processing (4). Examples of radiation or particulate matter include electromagnetic waves, gravitational/quantum particle waves, sound or other force waves, or debris, all for the purposes of higher dimensional (namely 3D) computing.