PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT
According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be tak...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SINGLA Anurag JOSEPH DURAIRAJ Satheesh Kumar |
description | According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017032130A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017032130A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017032130A13</originalsourceid><addsrcrecordid>eNrjZDAPCHLVdfZ39_MM8QxzVQh2dQ4N8gyJVPD0c_MP8nUM8fT3U3D0c1FwDXP1C1HwdfRzdHf1BTJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaG5gbGRobGBo6ExcaoA-Z4pRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><source>esp@cenet</source><creator>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</creator><creatorcontrib>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><description>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170202&DB=EPODOC&CC=US&NR=2017032130A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170202&DB=EPODOC&CC=US&NR=2017032130A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SINGLA Anurag</creatorcontrib><creatorcontrib>JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><description>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPCHLVdfZ39_MM8QxzVQh2dQ4N8gyJVPD0c_MP8nUM8fT3U3D0c1FwDXP1C1HwdfRzdHf1BTJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaG5gbGRobGBo6ExcaoA-Z4pRA</recordid><startdate>20170202</startdate><enddate>20170202</enddate><creator>SINGLA Anurag</creator><creator>JOSEPH DURAIRAJ Satheesh Kumar</creator><scope>EVB</scope></search><sort><creationdate>20170202</creationdate><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><author>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017032130A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SINGLA Anurag</creatorcontrib><creatorcontrib>JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SINGLA Anurag</au><au>JOSEPH DURAIRAJ Satheesh Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><date>2017-02-02</date><risdate>2017</risdate><abstract>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017032130A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SINGLA%20Anurag&rft.date=2017-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017032130A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |