PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT

According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be tak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SINGLA Anurag, JOSEPH DURAIRAJ Satheesh Kumar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SINGLA Anurag
JOSEPH DURAIRAJ Satheesh Kumar
description According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017032130A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017032130A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017032130A13</originalsourceid><addsrcrecordid>eNrjZDAPCHLVdfZ39_MM8QxzVQh2dQ4N8gyJVPD0c_MP8nUM8fT3U3D0c1FwDXP1C1HwdfRzdHf1BTJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaG5gbGRobGBo6ExcaoA-Z4pRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><source>esp@cenet</source><creator>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</creator><creatorcontrib>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><description>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170202&amp;DB=EPODOC&amp;CC=US&amp;NR=2017032130A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170202&amp;DB=EPODOC&amp;CC=US&amp;NR=2017032130A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SINGLA Anurag</creatorcontrib><creatorcontrib>JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><description>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPCHLVdfZ39_MM8QxzVQh2dQ4N8gyJVPD0c_MP8nUM8fT3U3D0c1FwDXP1C1HwdfRzdHf1BTJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaG5gbGRobGBo6ExcaoA-Z4pRA</recordid><startdate>20170202</startdate><enddate>20170202</enddate><creator>SINGLA Anurag</creator><creator>JOSEPH DURAIRAJ Satheesh Kumar</creator><scope>EVB</scope></search><sort><creationdate>20170202</creationdate><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><author>SINGLA Anurag ; JOSEPH DURAIRAJ Satheesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017032130A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SINGLA Anurag</creatorcontrib><creatorcontrib>JOSEPH DURAIRAJ Satheesh Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SINGLA Anurag</au><au>JOSEPH DURAIRAJ Satheesh Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT</title><date>2017-02-02</date><risdate>2017</risdate><abstract>According to an example, pre-cognitive SIEM may include using trained classifiers to detect an anomaly in input events, and generating a predictive attack graph based on the detected anomaly in the input events. The predictive attack graph may provide an indication of different paths that can be taken from an asset that is related to the detected anomaly to compromise other selected assets in a network of the asset, and the other selected assets may be selected based on a ranking criterion and a complexity criterion. A rank list and a complexity list may be generated. The rank list, the complexity list, a depth of the predictive attack graph, and a weighted value may be used to generate a score that provides an indication of a number of assets that can be compromised and a difficulty of exploiting vulnerabilities related to services of the assets that can be compromised.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017032130A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title PRE-COGNITIVE SECURITY INFORMATION AND EVENT MANAGEMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SINGLA%20Anurag&rft.date=2017-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017032130A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true