Grain Size Tuning for Radiation Resistance
A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Vetterick Greg Taheri Mitra Lenore |
description | A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017002456A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017002456A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017002456A13</originalsourceid><addsrcrecordid>eNrjZNByL0rMzFMIzqxKVQgpzcvMS1dIyy9SCEpMyUwsyczPUwhKLc4sLknMS07lYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmBgZGJqZmjobGxKkCAKKvKY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Grain Size Tuning for Radiation Resistance</title><source>esp@cenet</source><creator>Vetterick Greg ; Taheri Mitra Lenore</creator><creatorcontrib>Vetterick Greg ; Taheri Mitra Lenore</creatorcontrib><description>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170105&DB=EPODOC&CC=US&NR=2017002456A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170105&DB=EPODOC&CC=US&NR=2017002456A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vetterick Greg</creatorcontrib><creatorcontrib>Taheri Mitra Lenore</creatorcontrib><title>Grain Size Tuning for Radiation Resistance</title><description>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNByL0rMzFMIzqxKVQgpzcvMS1dIyy9SCEpMyUwsyczPUwhKLc4sLknMS07lYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmBgZGJqZmjobGxKkCAKKvKY8</recordid><startdate>20170105</startdate><enddate>20170105</enddate><creator>Vetterick Greg</creator><creator>Taheri Mitra Lenore</creator><scope>EVB</scope></search><sort><creationdate>20170105</creationdate><title>Grain Size Tuning for Radiation Resistance</title><author>Vetterick Greg ; Taheri Mitra Lenore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017002456A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Vetterick Greg</creatorcontrib><creatorcontrib>Taheri Mitra Lenore</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vetterick Greg</au><au>Taheri Mitra Lenore</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Grain Size Tuning for Radiation Resistance</title><date>2017-01-05</date><risdate>2017</risdate><abstract>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2017002456A1 |
source | esp@cenet |
subjects | CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | Grain Size Tuning for Radiation Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vetterick%20Greg&rft.date=2017-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017002456A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |