Grain Size Tuning for Radiation Resistance

A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vetterick Greg, Taheri Mitra Lenore
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vetterick Greg
Taheri Mitra Lenore
description A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2017002456A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2017002456A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2017002456A13</originalsourceid><addsrcrecordid>eNrjZNByL0rMzFMIzqxKVQgpzcvMS1dIyy9SCEpMyUwsyczPUwhKLc4sLknMS07lYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmBgZGJqZmjobGxKkCAKKvKY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Grain Size Tuning for Radiation Resistance</title><source>esp@cenet</source><creator>Vetterick Greg ; Taheri Mitra Lenore</creator><creatorcontrib>Vetterick Greg ; Taheri Mitra Lenore</creatorcontrib><description>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170105&amp;DB=EPODOC&amp;CC=US&amp;NR=2017002456A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170105&amp;DB=EPODOC&amp;CC=US&amp;NR=2017002456A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vetterick Greg</creatorcontrib><creatorcontrib>Taheri Mitra Lenore</creatorcontrib><title>Grain Size Tuning for Radiation Resistance</title><description>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNByL0rMzFMIzqxKVQgpzcvMS1dIyy9SCEpMyUwsyczPUwhKLc4sLknMS07lYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBobmBgZGJqZmjobGxKkCAKKvKY8</recordid><startdate>20170105</startdate><enddate>20170105</enddate><creator>Vetterick Greg</creator><creator>Taheri Mitra Lenore</creator><scope>EVB</scope></search><sort><creationdate>20170105</creationdate><title>Grain Size Tuning for Radiation Resistance</title><author>Vetterick Greg ; Taheri Mitra Lenore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2017002456A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Vetterick Greg</creatorcontrib><creatorcontrib>Taheri Mitra Lenore</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vetterick Greg</au><au>Taheri Mitra Lenore</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Grain Size Tuning for Radiation Resistance</title><date>2017-01-05</date><risdate>2017</risdate><abstract>A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2017002456A1
source esp@cenet
subjects CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title Grain Size Tuning for Radiation Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vetterick%20Greg&rft.date=2017-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2017002456A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true