MACHINE LEARNING SYSTEM INTERFACE

Some embodiments include an experiment management interface for a machine learning system. The experiment management interface can manage one or more workflow runs related to building or testing machine learning models. The experiment management interface can receive an experiment initialization com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mehanna Hussein Mohamed Hassan, Azzolini Alisson Gusatti, Dunn Jeffrey Scott, Vagata Pamela Shen, Xie Xiaowen, Farnham Rodrigo Bouchardet, Sidorov Aleksandr, Paton James Robert, Bowers Stuart Michael
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mehanna Hussein Mohamed Hassan
Azzolini Alisson Gusatti
Dunn Jeffrey Scott
Vagata Pamela Shen
Xie Xiaowen
Farnham Rodrigo Bouchardet
Sidorov Aleksandr
Paton James Robert
Bowers Stuart Michael
description Some embodiments include an experiment management interface for a machine learning system. The experiment management interface can manage one or more workflow runs related to building or testing machine learning models. The experiment management interface can receive an experiment initialization command to create a new experiment associated with a new workflow. A workflow can be represented by an interdependency graph of one or more data processing operators. The experiment management interface enables definition of the new workflow from scratch or by cloning and modifying an existing workflow. The workflow can define a summary format for its inputs and outputs. In some embodiments, the experiment management interface can automatically generate a comparative visualization at the conclusion of running the new workflow based on an input schema or an output schema of the new workflow.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2016358101A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2016358101A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2016358101A13</originalsourceid><addsrcrecordid>eNrjZFD0dXT28PRzVfBxdQzy8_RzVwiODA5x9VXw9AtxDXJzdHblYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBoZmxqYWhgaGjobGxKkCAJwqIw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING SYSTEM INTERFACE</title><source>esp@cenet</source><creator>Mehanna Hussein Mohamed Hassan ; Azzolini Alisson Gusatti ; Dunn Jeffrey Scott ; Vagata Pamela Shen ; Xie Xiaowen ; Farnham Rodrigo Bouchardet ; Sidorov Aleksandr ; Paton James Robert ; Bowers Stuart Michael</creator><creatorcontrib>Mehanna Hussein Mohamed Hassan ; Azzolini Alisson Gusatti ; Dunn Jeffrey Scott ; Vagata Pamela Shen ; Xie Xiaowen ; Farnham Rodrigo Bouchardet ; Sidorov Aleksandr ; Paton James Robert ; Bowers Stuart Michael</creatorcontrib><description>Some embodiments include an experiment management interface for a machine learning system. The experiment management interface can manage one or more workflow runs related to building or testing machine learning models. The experiment management interface can receive an experiment initialization command to create a new experiment associated with a new workflow. A workflow can be represented by an interdependency graph of one or more data processing operators. The experiment management interface enables definition of the new workflow from scratch or by cloning and modifying an existing workflow. The workflow can define a summary format for its inputs and outputs. In some embodiments, the experiment management interface can automatically generate a comparative visualization at the conclusion of running the new workflow based on an input schema or an output schema of the new workflow.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161208&amp;DB=EPODOC&amp;CC=US&amp;NR=2016358101A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161208&amp;DB=EPODOC&amp;CC=US&amp;NR=2016358101A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehanna Hussein Mohamed Hassan</creatorcontrib><creatorcontrib>Azzolini Alisson Gusatti</creatorcontrib><creatorcontrib>Dunn Jeffrey Scott</creatorcontrib><creatorcontrib>Vagata Pamela Shen</creatorcontrib><creatorcontrib>Xie Xiaowen</creatorcontrib><creatorcontrib>Farnham Rodrigo Bouchardet</creatorcontrib><creatorcontrib>Sidorov Aleksandr</creatorcontrib><creatorcontrib>Paton James Robert</creatorcontrib><creatorcontrib>Bowers Stuart Michael</creatorcontrib><title>MACHINE LEARNING SYSTEM INTERFACE</title><description>Some embodiments include an experiment management interface for a machine learning system. The experiment management interface can manage one or more workflow runs related to building or testing machine learning models. The experiment management interface can receive an experiment initialization command to create a new experiment associated with a new workflow. A workflow can be represented by an interdependency graph of one or more data processing operators. The experiment management interface enables definition of the new workflow from scratch or by cloning and modifying an existing workflow. The workflow can define a summary format for its inputs and outputs. In some embodiments, the experiment management interface can automatically generate a comparative visualization at the conclusion of running the new workflow based on an input schema or an output schema of the new workflow.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD0dXT28PRzVfBxdQzy8_RzVwiODA5x9VXw9AtxDXJzdHblYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBoZmxqYWhgaGjobGxKkCAJwqIw0</recordid><startdate>20161208</startdate><enddate>20161208</enddate><creator>Mehanna Hussein Mohamed Hassan</creator><creator>Azzolini Alisson Gusatti</creator><creator>Dunn Jeffrey Scott</creator><creator>Vagata Pamela Shen</creator><creator>Xie Xiaowen</creator><creator>Farnham Rodrigo Bouchardet</creator><creator>Sidorov Aleksandr</creator><creator>Paton James Robert</creator><creator>Bowers Stuart Michael</creator><scope>EVB</scope></search><sort><creationdate>20161208</creationdate><title>MACHINE LEARNING SYSTEM INTERFACE</title><author>Mehanna Hussein Mohamed Hassan ; Azzolini Alisson Gusatti ; Dunn Jeffrey Scott ; Vagata Pamela Shen ; Xie Xiaowen ; Farnham Rodrigo Bouchardet ; Sidorov Aleksandr ; Paton James Robert ; Bowers Stuart Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2016358101A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehanna Hussein Mohamed Hassan</creatorcontrib><creatorcontrib>Azzolini Alisson Gusatti</creatorcontrib><creatorcontrib>Dunn Jeffrey Scott</creatorcontrib><creatorcontrib>Vagata Pamela Shen</creatorcontrib><creatorcontrib>Xie Xiaowen</creatorcontrib><creatorcontrib>Farnham Rodrigo Bouchardet</creatorcontrib><creatorcontrib>Sidorov Aleksandr</creatorcontrib><creatorcontrib>Paton James Robert</creatorcontrib><creatorcontrib>Bowers Stuart Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehanna Hussein Mohamed Hassan</au><au>Azzolini Alisson Gusatti</au><au>Dunn Jeffrey Scott</au><au>Vagata Pamela Shen</au><au>Xie Xiaowen</au><au>Farnham Rodrigo Bouchardet</au><au>Sidorov Aleksandr</au><au>Paton James Robert</au><au>Bowers Stuart Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING SYSTEM INTERFACE</title><date>2016-12-08</date><risdate>2016</risdate><abstract>Some embodiments include an experiment management interface for a machine learning system. The experiment management interface can manage one or more workflow runs related to building or testing machine learning models. The experiment management interface can receive an experiment initialization command to create a new experiment associated with a new workflow. A workflow can be represented by an interdependency graph of one or more data processing operators. The experiment management interface enables definition of the new workflow from scratch or by cloning and modifying an existing workflow. The workflow can define a summary format for its inputs and outputs. In some embodiments, the experiment management interface can automatically generate a comparative visualization at the conclusion of running the new workflow based on an input schema or an output schema of the new workflow.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2016358101A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MACHINE LEARNING SYSTEM INTERFACE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mehanna%20Hussein%20Mohamed%20Hassan&rft.date=2016-12-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2016358101A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true