Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks

By way of example, the technology disclosed by this document receives image data; extracts a depth image and a color image from the image data; creates a mask image by segmenting the depth image; determines a first likelihood score from the depth image and the mask image using a layered classifier;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YALLA VEERAGANESH, MARTINSON ERIC
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YALLA VEERAGANESH
MARTINSON ERIC
description By way of example, the technology disclosed by this document receives image data; extracts a depth image and a color image from the image data; creates a mask image by segmenting the depth image; determines a first likelihood score from the depth image and the mask image using a layered classifier; determines a second likelihood score from the color image and the mask image using a deep convolutional neural network; and determines a class of at least a portion of the image data based on the first likelihood score and the second likelihood score. Further, the technology can pre-filter the mask image using the layered classifier and then use the pre-filtered mask image and the color image to calculate a second likelihood score using the deep convolutional neural network to speed up processing.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2016180195A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2016180195A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2016180195A13</originalsourceid><addsrcrecordid>eNrjZPB3LE3PTc0rycxLV_BJrEwt0nVKLE5NUfBPykpNLlFwSS0BUpn5eQrhmSUZQG5qgYJzfl5Zfk4pSDQxR8EvtbQITJWU5xdlF_MwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQzNDCwNDS1NHQ2PiVAEA9tE3hQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks</title><source>esp@cenet</source><creator>YALLA VEERAGANESH ; MARTINSON ERIC</creator><creatorcontrib>YALLA VEERAGANESH ; MARTINSON ERIC</creatorcontrib><description>By way of example, the technology disclosed by this document receives image data; extracts a depth image and a color image from the image data; creates a mask image by segmenting the depth image; determines a first likelihood score from the depth image and the mask image using a layered classifier; determines a second likelihood score from the color image and the mask image using a deep convolutional neural network; and determines a class of at least a portion of the image data based on the first likelihood score and the second likelihood score. Further, the technology can pre-filter the mask image using the layered classifier and then use the pre-filtered mask image and the color image to calculate a second likelihood score using the deep convolutional neural network to speed up processing.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160623&amp;DB=EPODOC&amp;CC=US&amp;NR=2016180195A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160623&amp;DB=EPODOC&amp;CC=US&amp;NR=2016180195A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YALLA VEERAGANESH</creatorcontrib><creatorcontrib>MARTINSON ERIC</creatorcontrib><title>Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks</title><description>By way of example, the technology disclosed by this document receives image data; extracts a depth image and a color image from the image data; creates a mask image by segmenting the depth image; determines a first likelihood score from the depth image and the mask image using a layered classifier; determines a second likelihood score from the color image and the mask image using a deep convolutional neural network; and determines a class of at least a portion of the image data based on the first likelihood score and the second likelihood score. Further, the technology can pre-filter the mask image using the layered classifier and then use the pre-filtered mask image and the color image to calculate a second likelihood score using the deep convolutional neural network to speed up processing.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3LE3PTc0rycxLV_BJrEwt0nVKLE5NUfBPykpNLlFwSS0BUpn5eQrhmSUZQG5qgYJzfl5Zfk4pSDQxR8EvtbQITJWU5xdlF_MwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDQzNDCwNDS1NHQ2PiVAEA9tE3hQ</recordid><startdate>20160623</startdate><enddate>20160623</enddate><creator>YALLA VEERAGANESH</creator><creator>MARTINSON ERIC</creator><scope>EVB</scope></search><sort><creationdate>20160623</creationdate><title>Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks</title><author>YALLA VEERAGANESH ; MARTINSON ERIC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2016180195A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YALLA VEERAGANESH</creatorcontrib><creatorcontrib>MARTINSON ERIC</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YALLA VEERAGANESH</au><au>MARTINSON ERIC</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks</title><date>2016-06-23</date><risdate>2016</risdate><abstract>By way of example, the technology disclosed by this document receives image data; extracts a depth image and a color image from the image data; creates a mask image by segmenting the depth image; determines a first likelihood score from the depth image and the mask image using a layered classifier; determines a second likelihood score from the color image and the mask image using a deep convolutional neural network; and determines a class of at least a portion of the image data based on the first likelihood score and the second likelihood score. Further, the technology can pre-filter the mask image using the layered classifier and then use the pre-filtered mask image and the color image to calculate a second likelihood score using the deep convolutional neural network to speed up processing.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2016180195A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YALLA%20VEERAGANESH&rft.date=2016-06-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2016180195A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true