PARTITIONING DATA FOR TRAINING MACHINE-LEARNING CLASSIFIERS
Various embodiments relating to partitioning a data set for training machine-learning classifiers based on an output of a globally trained machine-learning classifier are disclosed. In one embodiment, a first machine-learning classifier may be trained on a set of training data to produce a correspon...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various embodiments relating to partitioning a data set for training machine-learning classifiers based on an output of a globally trained machine-learning classifier are disclosed. In one embodiment, a first machine-learning classifier may be trained on a set of training data to produce a corresponding set of output data. The set of training data may be partitioned into a plurality of subsets based on the set of output data. Each subset may correspond to a different class. A second machine-learning classifier may be trained on the set of training data using a plurality of classes corresponding to the plurality of subsets to produce, for each data object of the set of training data, a probability distribution having for each class a probability that the data object is a member of the class. |
---|