PHASE INTERPOLATOR

Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHUA MARCIAL K, GORECKI JAMES L, IORGA COSMIN, ZHANG JIAYUN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHUA MARCIAL K
GORECKI JAMES L
IORGA COSMIN
ZHANG JIAYUN
description Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor and produce an interpolation voltage waveform. The current DACs are biased, weighted, and controlled by in-phase and quadrature-phase input clocks to yield an interpolation waveform that presents a phase value between the phases of the input clocks. Some embodiments deploying the interpolator core use feedback circuitry and reference voltages to adjust the common mode and amplitude of the interpolation voltage waveform to obtain both optimal performance and operation within the interpolator linear region or output compliance range. Both the single-core and dual-core implementations, as well as other implementations of the interpolator core, exhibit high power supply rejection, highly linear interpolation, a wide frequency range, and low cost duty cycle correction.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2016072620A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2016072620A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2016072620A13</originalsourceid><addsrcrecordid>eNrjZBAK8HAMdlXw9AtxDQrw93EM8Q_iYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBoZmBuZGZkYGjobGxKkCAMIUHxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PHASE INTERPOLATOR</title><source>esp@cenet</source><creator>CHUA MARCIAL K ; GORECKI JAMES L ; IORGA COSMIN ; ZHANG JIAYUN</creator><creatorcontrib>CHUA MARCIAL K ; GORECKI JAMES L ; IORGA COSMIN ; ZHANG JIAYUN</creatorcontrib><description>Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor and produce an interpolation voltage waveform. The current DACs are biased, weighted, and controlled by in-phase and quadrature-phase input clocks to yield an interpolation waveform that presents a phase value between the phases of the input clocks. Some embodiments deploying the interpolator core use feedback circuitry and reference voltages to adjust the common mode and amplitude of the interpolation voltage waveform to obtain both optimal performance and operation within the interpolator linear region or output compliance range. Both the single-core and dual-core implementations, as well as other implementations of the interpolator core, exhibit high power supply rejection, highly linear interpolation, a wide frequency range, and low cost duty cycle correction.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PULSE TECHNIQUE ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160310&amp;DB=EPODOC&amp;CC=US&amp;NR=2016072620A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160310&amp;DB=EPODOC&amp;CC=US&amp;NR=2016072620A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHUA MARCIAL K</creatorcontrib><creatorcontrib>GORECKI JAMES L</creatorcontrib><creatorcontrib>IORGA COSMIN</creatorcontrib><creatorcontrib>ZHANG JIAYUN</creatorcontrib><title>PHASE INTERPOLATOR</title><description>Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor and produce an interpolation voltage waveform. The current DACs are biased, weighted, and controlled by in-phase and quadrature-phase input clocks to yield an interpolation waveform that presents a phase value between the phases of the input clocks. Some embodiments deploying the interpolator core use feedback circuitry and reference voltages to adjust the common mode and amplitude of the interpolation voltage waveform to obtain both optimal performance and operation within the interpolator linear region or output compliance range. Both the single-core and dual-core implementations, as well as other implementations of the interpolator core, exhibit high power supply rejection, highly linear interpolation, a wide frequency range, and low cost duty cycle correction.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PULSE TECHNIQUE</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBAK8HAMdlXw9AtxDQrw93EM8Q_iYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBoZmBuZGZkYGjobGxKkCAMIUHxU</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>CHUA MARCIAL K</creator><creator>GORECKI JAMES L</creator><creator>IORGA COSMIN</creator><creator>ZHANG JIAYUN</creator><scope>EVB</scope></search><sort><creationdate>20160310</creationdate><title>PHASE INTERPOLATOR</title><author>CHUA MARCIAL K ; GORECKI JAMES L ; IORGA COSMIN ; ZHANG JIAYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2016072620A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PULSE TECHNIQUE</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHUA MARCIAL K</creatorcontrib><creatorcontrib>GORECKI JAMES L</creatorcontrib><creatorcontrib>IORGA COSMIN</creatorcontrib><creatorcontrib>ZHANG JIAYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHUA MARCIAL K</au><au>GORECKI JAMES L</au><au>IORGA COSMIN</au><au>ZHANG JIAYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PHASE INTERPOLATOR</title><date>2016-03-10</date><risdate>2016</risdate><abstract>Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor and produce an interpolation voltage waveform. The current DACs are biased, weighted, and controlled by in-phase and quadrature-phase input clocks to yield an interpolation waveform that presents a phase value between the phases of the input clocks. Some embodiments deploying the interpolator core use feedback circuitry and reference voltages to adjust the common mode and amplitude of the interpolation voltage waveform to obtain both optimal performance and operation within the interpolator linear region or output compliance range. Both the single-core and dual-core implementations, as well as other implementations of the interpolator core, exhibit high power supply rejection, highly linear interpolation, a wide frequency range, and low cost duty cycle correction.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2016072620A1
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PULSE TECHNIQUE
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title PHASE INTERPOLATOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHUA%20MARCIAL%20K&rft.date=2016-03-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2016072620A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true