INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS

Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HARRIS MICHAEL, KROSS MICHAEL, GROSSMAN JACK, SPRAGUE MATTHEW, COHEN DAVID, MENON PARVATHY, BOROCHOFF ADAM, THOMPSON JAMES, FU BING JIE, MA JASON, BERLER STEVEN, BOORTZ JULIA, NEPOMNYASHCHIY ILYA, SMALIY ALEX
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HARRIS MICHAEL
KROSS MICHAEL
GROSSMAN JACK
SPRAGUE MATTHEW
COHEN DAVID
MENON PARVATHY
BOROCHOFF ADAM
THOMPSON JAMES
FU BING JIE
MA JASON
BERLER STEVEN
BOORTZ JULIA
NEPOMNYASHCHIY ILYA
SMALIY ALEX
description Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyses (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2016006749A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2016006749A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2016006749A13</originalsourceid><addsrcrecordid>eNrjZDDy9AtxDfJz9FHwdfQJdwxyVXBxDHFU8Axx9VVw9gkNBkp6-rkrOPq5ALGjT2SwZzAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDQzMDAzN7F0NDQmThUADUwnuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS</title><source>esp@cenet</source><creator>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</creator><creatorcontrib>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</creatorcontrib><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyses (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160107&amp;DB=EPODOC&amp;CC=US&amp;NR=2016006749A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160107&amp;DB=EPODOC&amp;CC=US&amp;NR=2016006749A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HARRIS MICHAEL</creatorcontrib><creatorcontrib>KROSS MICHAEL</creatorcontrib><creatorcontrib>GROSSMAN JACK</creatorcontrib><creatorcontrib>SPRAGUE MATTHEW</creatorcontrib><creatorcontrib>COHEN DAVID</creatorcontrib><creatorcontrib>MENON PARVATHY</creatorcontrib><creatorcontrib>BOROCHOFF ADAM</creatorcontrib><creatorcontrib>THOMPSON JAMES</creatorcontrib><creatorcontrib>FU BING JIE</creatorcontrib><creatorcontrib>MA JASON</creatorcontrib><creatorcontrib>BERLER STEVEN</creatorcontrib><creatorcontrib>BOORTZ JULIA</creatorcontrib><creatorcontrib>NEPOMNYASHCHIY ILYA</creatorcontrib><creatorcontrib>SMALIY ALEX</creatorcontrib><title>INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS</title><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyses (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDy9AtxDfJz9FHwdfQJdwxyVXBxDHFU8Axx9VVw9gkNBkp6-rkrOPq5ALGjT2SwZzAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDQzMDAzN7F0NDQmThUADUwnuQ</recordid><startdate>20160107</startdate><enddate>20160107</enddate><creator>HARRIS MICHAEL</creator><creator>KROSS MICHAEL</creator><creator>GROSSMAN JACK</creator><creator>SPRAGUE MATTHEW</creator><creator>COHEN DAVID</creator><creator>MENON PARVATHY</creator><creator>BOROCHOFF ADAM</creator><creator>THOMPSON JAMES</creator><creator>FU BING JIE</creator><creator>MA JASON</creator><creator>BERLER STEVEN</creator><creator>BOORTZ JULIA</creator><creator>NEPOMNYASHCHIY ILYA</creator><creator>SMALIY ALEX</creator><scope>EVB</scope></search><sort><creationdate>20160107</creationdate><title>INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS</title><author>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2016006749A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>HARRIS MICHAEL</creatorcontrib><creatorcontrib>KROSS MICHAEL</creatorcontrib><creatorcontrib>GROSSMAN JACK</creatorcontrib><creatorcontrib>SPRAGUE MATTHEW</creatorcontrib><creatorcontrib>COHEN DAVID</creatorcontrib><creatorcontrib>MENON PARVATHY</creatorcontrib><creatorcontrib>BOROCHOFF ADAM</creatorcontrib><creatorcontrib>THOMPSON JAMES</creatorcontrib><creatorcontrib>FU BING JIE</creatorcontrib><creatorcontrib>MA JASON</creatorcontrib><creatorcontrib>BERLER STEVEN</creatorcontrib><creatorcontrib>BOORTZ JULIA</creatorcontrib><creatorcontrib>NEPOMNYASHCHIY ILYA</creatorcontrib><creatorcontrib>SMALIY ALEX</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HARRIS MICHAEL</au><au>KROSS MICHAEL</au><au>GROSSMAN JACK</au><au>SPRAGUE MATTHEW</au><au>COHEN DAVID</au><au>MENON PARVATHY</au><au>BOROCHOFF ADAM</au><au>THOMPSON JAMES</au><au>FU BING JIE</au><au>MA JASON</au><au>BERLER STEVEN</au><au>BOORTZ JULIA</au><au>NEPOMNYASHCHIY ILYA</au><au>SMALIY ALEX</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS</title><date>2016-01-07</date><risdate>2016</risdate><abstract>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyses (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2016006749A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title INTERNAL MALWARE DATA ITEM CLUSTERING AND ANALYSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HARRIS%20MICHAEL&rft.date=2016-01-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2016006749A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true