Customized Predictive Analytical Model Training

Methods, systems, and apparatus, including computer programs encoded on one or more computer storage devices, for training predictive models. Multiple training data records are received that each include an input data portion and an output data portion. A training data type is determined that corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BRECKENRIDGE JORDAN M, KAPLOW ROBERT, LIN WEI-HAO, MANN GIDEON S, GREEN TRAVIS H. K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BRECKENRIDGE JORDAN M
KAPLOW ROBERT
LIN WEI-HAO
MANN GIDEON S
GREEN TRAVIS H. K
description Methods, systems, and apparatus, including computer programs encoded on one or more computer storage devices, for training predictive models. Multiple training data records are received that each include an input data portion and an output data portion. A training data type is determined that corresponds to the training data. For example, a training data type can be determined by inputting the output data portions into one or more trained predictive classifiers. In other example, the training data type can be determined by comparison of the output data portions to data formats. Based on the determined training data type, a set of training functions are identified that are compatible with the training data of the determined training data type. The training data and the identified set of training functions are used to train multiple predictive models.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2015170056A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2015170056A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2015170056A13</originalsourceid><addsrcrecordid>eNrjZNB3Li0uyc_NrEpNUQgoSk3JTC7JLEtVcMxLzKksyUxOzFHwzU9JzVEIKUrMzMvMS-dhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhqaG5gYGpmaOhsbEqQIA5iQr5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Customized Predictive Analytical Model Training</title><source>esp@cenet</source><creator>BRECKENRIDGE JORDAN M ; KAPLOW ROBERT ; LIN WEI-HAO ; MANN GIDEON S ; GREEN TRAVIS H. K</creator><creatorcontrib>BRECKENRIDGE JORDAN M ; KAPLOW ROBERT ; LIN WEI-HAO ; MANN GIDEON S ; GREEN TRAVIS H. K</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on one or more computer storage devices, for training predictive models. Multiple training data records are received that each include an input data portion and an output data portion. A training data type is determined that corresponds to the training data. For example, a training data type can be determined by inputting the output data portions into one or more trained predictive classifiers. In other example, the training data type can be determined by comparison of the output data portions to data formats. Based on the determined training data type, a set of training functions are identified that are compatible with the training data of the determined training data type. The training data and the identified set of training functions are used to train multiple predictive models.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150618&amp;DB=EPODOC&amp;CC=US&amp;NR=2015170056A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150618&amp;DB=EPODOC&amp;CC=US&amp;NR=2015170056A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BRECKENRIDGE JORDAN M</creatorcontrib><creatorcontrib>KAPLOW ROBERT</creatorcontrib><creatorcontrib>LIN WEI-HAO</creatorcontrib><creatorcontrib>MANN GIDEON S</creatorcontrib><creatorcontrib>GREEN TRAVIS H. K</creatorcontrib><title>Customized Predictive Analytical Model Training</title><description>Methods, systems, and apparatus, including computer programs encoded on one or more computer storage devices, for training predictive models. Multiple training data records are received that each include an input data portion and an output data portion. A training data type is determined that corresponds to the training data. For example, a training data type can be determined by inputting the output data portions into one or more trained predictive classifiers. In other example, the training data type can be determined by comparison of the output data portions to data formats. Based on the determined training data type, a set of training functions are identified that are compatible with the training data of the determined training data type. The training data and the identified set of training functions are used to train multiple predictive models.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB3Li0uyc_NrEpNUQgoSk3JTC7JLEtVcMxLzKksyUxOzFHwzU9JzVEIKUrMzMvMS-dhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhqaG5gYGpmaOhsbEqQIA5iQr5Q</recordid><startdate>20150618</startdate><enddate>20150618</enddate><creator>BRECKENRIDGE JORDAN M</creator><creator>KAPLOW ROBERT</creator><creator>LIN WEI-HAO</creator><creator>MANN GIDEON S</creator><creator>GREEN TRAVIS H. K</creator><scope>EVB</scope></search><sort><creationdate>20150618</creationdate><title>Customized Predictive Analytical Model Training</title><author>BRECKENRIDGE JORDAN M ; KAPLOW ROBERT ; LIN WEI-HAO ; MANN GIDEON S ; GREEN TRAVIS H. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2015170056A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BRECKENRIDGE JORDAN M</creatorcontrib><creatorcontrib>KAPLOW ROBERT</creatorcontrib><creatorcontrib>LIN WEI-HAO</creatorcontrib><creatorcontrib>MANN GIDEON S</creatorcontrib><creatorcontrib>GREEN TRAVIS H. K</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BRECKENRIDGE JORDAN M</au><au>KAPLOW ROBERT</au><au>LIN WEI-HAO</au><au>MANN GIDEON S</au><au>GREEN TRAVIS H. K</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Customized Predictive Analytical Model Training</title><date>2015-06-18</date><risdate>2015</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on one or more computer storage devices, for training predictive models. Multiple training data records are received that each include an input data portion and an output data portion. A training data type is determined that corresponds to the training data. For example, a training data type can be determined by inputting the output data portions into one or more trained predictive classifiers. In other example, the training data type can be determined by comparison of the output data portions to data formats. Based on the determined training data type, a set of training functions are identified that are compatible with the training data of the determined training data type. The training data and the identified set of training functions are used to train multiple predictive models.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2015170056A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Customized Predictive Analytical Model Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BRECKENRIDGE%20JORDAN%20M&rft.date=2015-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2015170056A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true