METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS

A method is disclosed for determining with computing apparatus an adequate number of clusters for summarizing result data that includes a large number of observation data points. The summary data includes a small number of samples of data from each cluster with the number of clusters being large eno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MEHLBERG STEVEN G, GUENTHNER RUSSELL W, BROWN F. MICHEL
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MEHLBERG STEVEN G
GUENTHNER RUSSELL W
BROWN F. MICHEL
description A method is disclosed for determining with computing apparatus an adequate number of clusters for summarizing result data that includes a large number of observation data points. The summary data includes a small number of samples of data from each cluster with the number of clusters being large enough to provide a good summary of all the result data without being so large as to make it difficult for one skilled in the art to examine visually all of the summary data generated by the computing apparatus.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2015169732A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2015169732A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2015169732A13</originalsourceid><addsrcrecordid>eNqNi80KgkAURt20iOodLrQOUqloOY139ML8xMyo5EYkplWUYM_Qc6fRA7T64HznzKO3Ql-YDISx4EqlmKUGM6gIa9I5GAGS2RxBl-qE1k3gjHa0FdMcYawtcQd1QRLBomekp46bXFPzVabCeNSemJQXcDQ-gjjTHjKsiHky2i2j2a27D2H120W0Fuh5sQn9sw1D313DI7za0iXbeBfvj4c0YXH6n_UBBKY_Lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS</title><source>esp@cenet</source><creator>MEHLBERG STEVEN G ; GUENTHNER RUSSELL W ; BROWN F. MICHEL</creator><creatorcontrib>MEHLBERG STEVEN G ; GUENTHNER RUSSELL W ; BROWN F. MICHEL</creatorcontrib><description>A method is disclosed for determining with computing apparatus an adequate number of clusters for summarizing result data that includes a large number of observation data points. The summary data includes a small number of samples of data from each cluster with the number of clusters being large enough to provide a good summary of all the result data without being so large as to make it difficult for one skilled in the art to examine visually all of the summary data generated by the computing apparatus.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150618&amp;DB=EPODOC&amp;CC=US&amp;NR=2015169732A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150618&amp;DB=EPODOC&amp;CC=US&amp;NR=2015169732A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MEHLBERG STEVEN G</creatorcontrib><creatorcontrib>GUENTHNER RUSSELL W</creatorcontrib><creatorcontrib>BROWN F. MICHEL</creatorcontrib><title>METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS</title><description>A method is disclosed for determining with computing apparatus an adequate number of clusters for summarizing result data that includes a large number of observation data points. The summary data includes a small number of samples of data from each cluster with the number of clusters being large enough to provide a good summary of all the result data without being so large as to make it difficult for one skilled in the art to examine visually all of the summary data generated by the computing apparatus.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi80KgkAURt20iOodLrQOUqloOY139ML8xMyo5EYkplWUYM_Qc6fRA7T64HznzKO3Ql-YDISx4EqlmKUGM6gIa9I5GAGS2RxBl-qE1k3gjHa0FdMcYawtcQd1QRLBomekp46bXFPzVabCeNSemJQXcDQ-gjjTHjKsiHky2i2j2a27D2H120W0Fuh5sQn9sw1D313DI7za0iXbeBfvj4c0YXH6n_UBBKY_Lw</recordid><startdate>20150618</startdate><enddate>20150618</enddate><creator>MEHLBERG STEVEN G</creator><creator>GUENTHNER RUSSELL W</creator><creator>BROWN F. MICHEL</creator><scope>EVB</scope></search><sort><creationdate>20150618</creationdate><title>METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS</title><author>MEHLBERG STEVEN G ; GUENTHNER RUSSELL W ; BROWN F. MICHEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2015169732A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MEHLBERG STEVEN G</creatorcontrib><creatorcontrib>GUENTHNER RUSSELL W</creatorcontrib><creatorcontrib>BROWN F. MICHEL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MEHLBERG STEVEN G</au><au>GUENTHNER RUSSELL W</au><au>BROWN F. MICHEL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS</title><date>2015-06-18</date><risdate>2015</risdate><abstract>A method is disclosed for determining with computing apparatus an adequate number of clusters for summarizing result data that includes a large number of observation data points. The summary data includes a small number of samples of data from each cluster with the number of clusters being large enough to provide a good summary of all the result data without being so large as to make it difficult for one skilled in the art to examine visually all of the summary data generated by the computing apparatus.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2015169732A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title METHOD FOR SUMMARIZED VIEWING OF LARGE NUMBERS OF PERFORMANCE METRICS WHILE RETAINING COGNIZANCE OF POTENTIALLY SIGNIFICANT DEVIATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MEHLBERG%20STEVEN%20G&rft.date=2015-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2015169732A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true