AUTO-TAGGER THAT LEARNS

Examples perform context categorization by categorizing a transcription of a speech file based on the context of the subject matter of the transcription. A computer processor is configuration to provide a system that generates a normalized transcription of the speech file transcription and compares...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: BROWN DEBORAH WASHINGTON
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BROWN DEBORAH WASHINGTON
description Examples perform context categorization by categorizing a transcription of a speech file based on the context of the subject matter of the transcription. A computer processor is configuration to provide a system that generates a normalized transcription of the speech file transcription and compares elements of the normalized transcription to elements of a context categorization model or a corpus of categorized transcriptions to determine whether the normalized transcription contains keywords of transcriptions that have previously been categorized. If the comparison yields a result indicating a specific match with a context category, the normalized transcription is assigned to the matching context category. As the number of successfully categorized transcriptions stored in the corpus increases, the more frequently the system and method examples perform successful comparisons. As a result, the context categorization accuracy increases and the system appears to learn.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2015154956A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2015154956A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2015154956A13</originalsourceid><addsrcrecordid>eNrjZBB3DA3x1w1xdHd3DVII8XAMUfBxdQzyC-ZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhqaGpiaWpmaOhsbEqQIASzAgVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTO-TAGGER THAT LEARNS</title><source>esp@cenet</source><creator>BROWN DEBORAH WASHINGTON</creator><creatorcontrib>BROWN DEBORAH WASHINGTON</creatorcontrib><description>Examples perform context categorization by categorizing a transcription of a speech file based on the context of the subject matter of the transcription. A computer processor is configuration to provide a system that generates a normalized transcription of the speech file transcription and compares elements of the normalized transcription to elements of a context categorization model or a corpus of categorized transcriptions to determine whether the normalized transcription contains keywords of transcriptions that have previously been categorized. If the comparison yields a result indicating a specific match with a context category, the normalized transcription is assigned to the matching context category. As the number of successfully categorized transcriptions stored in the corpus increases, the more frequently the system and method examples perform successful comparisons. As a result, the context categorization accuracy increases and the system appears to learn.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150604&amp;DB=EPODOC&amp;CC=US&amp;NR=2015154956A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150604&amp;DB=EPODOC&amp;CC=US&amp;NR=2015154956A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BROWN DEBORAH WASHINGTON</creatorcontrib><title>AUTO-TAGGER THAT LEARNS</title><description>Examples perform context categorization by categorizing a transcription of a speech file based on the context of the subject matter of the transcription. A computer processor is configuration to provide a system that generates a normalized transcription of the speech file transcription and compares elements of the normalized transcription to elements of a context categorization model or a corpus of categorized transcriptions to determine whether the normalized transcription contains keywords of transcriptions that have previously been categorized. If the comparison yields a result indicating a specific match with a context category, the normalized transcription is assigned to the matching context category. As the number of successfully categorized transcriptions stored in the corpus increases, the more frequently the system and method examples perform successful comparisons. As a result, the context categorization accuracy increases and the system appears to learn.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBB3DA3x1w1xdHd3DVII8XAMUfBxdQzyC-ZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhqaGpiaWpmaOhsbEqQIASzAgVA</recordid><startdate>20150604</startdate><enddate>20150604</enddate><creator>BROWN DEBORAH WASHINGTON</creator><scope>EVB</scope></search><sort><creationdate>20150604</creationdate><title>AUTO-TAGGER THAT LEARNS</title><author>BROWN DEBORAH WASHINGTON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2015154956A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>BROWN DEBORAH WASHINGTON</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BROWN DEBORAH WASHINGTON</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTO-TAGGER THAT LEARNS</title><date>2015-06-04</date><risdate>2015</risdate><abstract>Examples perform context categorization by categorizing a transcription of a speech file based on the context of the subject matter of the transcription. A computer processor is configuration to provide a system that generates a normalized transcription of the speech file transcription and compares elements of the normalized transcription to elements of a context categorization model or a corpus of categorized transcriptions to determine whether the normalized transcription contains keywords of transcriptions that have previously been categorized. If the comparison yields a result indicating a specific match with a context category, the normalized transcription is assigned to the matching context category. As the number of successfully categorized transcriptions stored in the corpus increases, the more frequently the system and method examples perform successful comparisons. As a result, the context categorization accuracy increases and the system appears to learn.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2015154956A1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title AUTO-TAGGER THAT LEARNS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BROWN%20DEBORAH%20WASHINGTON&rft.date=2015-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2015154956A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true