CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY

A new class of polyhedron is constructed by decorating each of the triangular facets of an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." A unique set of internal angles in each planar face of each new polyhedron is then obtained, for example by solving a sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GAYED JAMES MAURICE, SCHEIN STANLEY JAY
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GAYED JAMES MAURICE
SCHEIN STANLEY JAY
description A new class of polyhedron is constructed by decorating each of the triangular facets of an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." A unique set of internal angles in each planar face of each new polyhedron is then obtained, for example by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, where the independent variables are a subset of the internal angles in 6 gons. Alternatively, an iterative method that solves for angles within each hexagonal ring may be solved for that nulls dihedral angle discrepancy throughout the polyhedron. The 6 gon faces in the resulting "Goldberg polyhedra" are equilateral and planar, but not equiangular, and nearly spherical.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2015037766A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2015037766A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2015037766A13</originalsourceid><addsrcrecordid>eNrjZDB19vcLc41QcA0M9fRxDHENcvRRCPD3ifRwdQlyVAj3DPFAcH0UgiN9fV1DgiJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGpgbG5uZmZo6ExcaoAyeIpKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY</title><source>esp@cenet</source><creator>GAYED JAMES MAURICE ; SCHEIN STANLEY JAY</creator><creatorcontrib>GAYED JAMES MAURICE ; SCHEIN STANLEY JAY</creatorcontrib><description>A new class of polyhedron is constructed by decorating each of the triangular facets of an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." A unique set of internal angles in each planar face of each new polyhedron is then obtained, for example by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, where the independent variables are a subset of the internal angles in 6 gons. Alternatively, an iterative method that solves for angles within each hexagonal ring may be solved for that nulls dihedral angle discrepancy throughout the polyhedron. The 6 gon faces in the resulting "Goldberg polyhedra" are equilateral and planar, but not equiangular, and nearly spherical.</description><language>eng</language><subject>ADVERTISING ; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE ; BUILDING ; CALCULATING ; CEILINGS ; COMPUTING ; COUNTING ; CRYPTOGRAPHY ; DIAGRAMS ; DISPLAY ; EDUCATION ; EDUCATIONAL OR DEMONSTRATION APPLIANCES ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; FLOORS ; GENERAL BUILDING CONSTRUCTIONS ; GLOBES ; INSULATION OR OTHER PROTECTION OF BUILDINGS ; PHYSICS ; PLANETARIA ; ROOFS ; SEALS ; WALLS, e.g. PARTITIONS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150205&amp;DB=EPODOC&amp;CC=US&amp;NR=2015037766A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150205&amp;DB=EPODOC&amp;CC=US&amp;NR=2015037766A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAYED JAMES MAURICE</creatorcontrib><creatorcontrib>SCHEIN STANLEY JAY</creatorcontrib><title>CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY</title><description>A new class of polyhedron is constructed by decorating each of the triangular facets of an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." A unique set of internal angles in each planar face of each new polyhedron is then obtained, for example by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, where the independent variables are a subset of the internal angles in 6 gons. Alternatively, an iterative method that solves for angles within each hexagonal ring may be solved for that nulls dihedral angle discrepancy throughout the polyhedron. The 6 gon faces in the resulting "Goldberg polyhedra" are equilateral and planar, but not equiangular, and nearly spherical.</description><subject>ADVERTISING</subject><subject>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</subject><subject>BUILDING</subject><subject>CALCULATING</subject><subject>CEILINGS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>CRYPTOGRAPHY</subject><subject>DIAGRAMS</subject><subject>DISPLAY</subject><subject>EDUCATION</subject><subject>EDUCATIONAL OR DEMONSTRATION APPLIANCES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>FLOORS</subject><subject>GENERAL BUILDING CONSTRUCTIONS</subject><subject>GLOBES</subject><subject>INSULATION OR OTHER PROTECTION OF BUILDINGS</subject><subject>PHYSICS</subject><subject>PLANETARIA</subject><subject>ROOFS</subject><subject>SEALS</subject><subject>WALLS, e.g. PARTITIONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB19vcLc41QcA0M9fRxDHENcvRRCPD3ifRwdQlyVAj3DPFAcH0UgiN9fV1DgiJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGpgbG5uZmZo6ExcaoAyeIpKA</recordid><startdate>20150205</startdate><enddate>20150205</enddate><creator>GAYED JAMES MAURICE</creator><creator>SCHEIN STANLEY JAY</creator><scope>EVB</scope></search><sort><creationdate>20150205</creationdate><title>CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY</title><author>GAYED JAMES MAURICE ; SCHEIN STANLEY JAY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2015037766A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ADVERTISING</topic><topic>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</topic><topic>BUILDING</topic><topic>CALCULATING</topic><topic>CEILINGS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>CRYPTOGRAPHY</topic><topic>DIAGRAMS</topic><topic>DISPLAY</topic><topic>EDUCATION</topic><topic>EDUCATIONAL OR DEMONSTRATION APPLIANCES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>FLOORS</topic><topic>GENERAL BUILDING CONSTRUCTIONS</topic><topic>GLOBES</topic><topic>INSULATION OR OTHER PROTECTION OF BUILDINGS</topic><topic>PHYSICS</topic><topic>PLANETARIA</topic><topic>ROOFS</topic><topic>SEALS</topic><topic>WALLS, e.g. PARTITIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>GAYED JAMES MAURICE</creatorcontrib><creatorcontrib>SCHEIN STANLEY JAY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAYED JAMES MAURICE</au><au>SCHEIN STANLEY JAY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY</title><date>2015-02-05</date><risdate>2015</risdate><abstract>A new class of polyhedron is constructed by decorating each of the triangular facets of an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." A unique set of internal angles in each planar face of each new polyhedron is then obtained, for example by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, where the independent variables are a subset of the internal angles in 6 gons. Alternatively, an iterative method that solves for angles within each hexagonal ring may be solved for that nulls dihedral angle discrepancy throughout the polyhedron. The 6 gon faces in the resulting "Goldberg polyhedra" are equilateral and planar, but not equiangular, and nearly spherical.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2015037766A1
source esp@cenet
subjects ADVERTISING
APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE
BUILDING
CALCULATING
CEILINGS
COMPUTING
COUNTING
CRYPTOGRAPHY
DIAGRAMS
DISPLAY
EDUCATION
EDUCATIONAL OR DEMONSTRATION APPLIANCES
ELECTRIC DIGITAL DATA PROCESSING
FIXED CONSTRUCTIONS
FLOORS
GENERAL BUILDING CONSTRUCTIONS
GLOBES
INSULATION OR OTHER PROTECTION OF BUILDINGS
PHYSICS
PLANETARIA
ROOFS
SEALS
WALLS, e.g. PARTITIONS
title CONVEX EQUILATERAL POLYHEDRA WITH POLYHEDRAL SYMMETRY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAYED%20JAMES%20MAURICE&rft.date=2015-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2015037766A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true