Combined Cycle Integrated Combustor and Nozzle System
An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the D...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BULMAN MELVIN J |
description | An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the DMRJ are integrated to provide effective thrust from Mach 0 to in excess of Mach 4. As the booster accelerates the vehicle from Mach 0 to in excess of Mach 4, from Mach 0 to about Mach 2 incoming air delivered to the DMRJ is accelerated by primary ejector thrusters that may receive oxidizer from either on-board oxidizer tanks or from turbine compressor discharge air. As the TBCC further accelerates the vehicle from about Mach 0 to in excess of Mach 4 exhaust from the turbine and exhaust from the DMRJ are combined in a common nozzle disposed downstream of a combustor portion of the DMRJ functioning as an aerodynamic choke. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2015007550A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2015007550A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2015007550A13</originalsourceid><addsrcrecordid>eNrjZDB1zs9NysxLTVFwrkzOSVXwzCtJTS9KLAEJAGVKi0vyixQS81IU_PKrqoDywZXFJam5PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDQ1MDA3NTUwNHQmDhVAPoXLdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Combined Cycle Integrated Combustor and Nozzle System</title><source>esp@cenet</source><creator>BULMAN MELVIN J</creator><creatorcontrib>BULMAN MELVIN J</creatorcontrib><description>An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the DMRJ are integrated to provide effective thrust from Mach 0 to in excess of Mach 4. As the booster accelerates the vehicle from Mach 0 to in excess of Mach 4, from Mach 0 to about Mach 2 incoming air delivered to the DMRJ is accelerated by primary ejector thrusters that may receive oxidizer from either on-board oxidizer tanks or from turbine compressor discharge air. As the TBCC further accelerates the vehicle from about Mach 0 to in excess of Mach 4 exhaust from the turbine and exhaust from the DMRJ are combined in a common nozzle disposed downstream of a combustor portion of the DMRJ functioning as an aerodynamic choke.</description><language>eng</language><subject>BLASTING ; CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION ; COMBUSTION ENGINES ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; INDEXING SCHEME FOR ASPECTS RELATING TONON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES ORJET-PROPULSION PLANTS ; INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUSSUBCLASSES OF CLASSES F01-F04 ; JET-PROPULSION PLANTS ; LIGHTING ; MECHANICAL ENGINEERING ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; WEAPONS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150108&DB=EPODOC&CC=US&NR=2015007550A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150108&DB=EPODOC&CC=US&NR=2015007550A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BULMAN MELVIN J</creatorcontrib><title>Combined Cycle Integrated Combustor and Nozzle System</title><description>An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the DMRJ are integrated to provide effective thrust from Mach 0 to in excess of Mach 4. As the booster accelerates the vehicle from Mach 0 to in excess of Mach 4, from Mach 0 to about Mach 2 incoming air delivered to the DMRJ is accelerated by primary ejector thrusters that may receive oxidizer from either on-board oxidizer tanks or from turbine compressor discharge air. As the TBCC further accelerates the vehicle from about Mach 0 to in excess of Mach 4 exhaust from the turbine and exhaust from the DMRJ are combined in a common nozzle disposed downstream of a combustor portion of the DMRJ functioning as an aerodynamic choke.</description><subject>BLASTING</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION</subject><subject>COMBUSTION ENGINES</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>INDEXING SCHEME FOR ASPECTS RELATING TONON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES ORJET-PROPULSION PLANTS</subject><subject>INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUSSUBCLASSES OF CLASSES F01-F04</subject><subject>JET-PROPULSION PLANTS</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1zs9NysxLTVFwrkzOSVXwzCtJTS9KLAEJAGVKi0vyixQS81IU_PKrqoDywZXFJam5PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDQ1MDA3NTUwNHQmDhVAPoXLdI</recordid><startdate>20150108</startdate><enddate>20150108</enddate><creator>BULMAN MELVIN J</creator><scope>EVB</scope></search><sort><creationdate>20150108</creationdate><title>Combined Cycle Integrated Combustor and Nozzle System</title><author>BULMAN MELVIN J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2015007550A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>BLASTING</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION</topic><topic>COMBUSTION ENGINES</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>INDEXING SCHEME FOR ASPECTS RELATING TONON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES ORJET-PROPULSION PLANTS</topic><topic>INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUSSUBCLASSES OF CLASSES F01-F04</topic><topic>JET-PROPULSION PLANTS</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>BULMAN MELVIN J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BULMAN MELVIN J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Combined Cycle Integrated Combustor and Nozzle System</title><date>2015-01-08</date><risdate>2015</risdate><abstract>An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the DMRJ are integrated to provide effective thrust from Mach 0 to in excess of Mach 4. As the booster accelerates the vehicle from Mach 0 to in excess of Mach 4, from Mach 0 to about Mach 2 incoming air delivered to the DMRJ is accelerated by primary ejector thrusters that may receive oxidizer from either on-board oxidizer tanks or from turbine compressor discharge air. As the TBCC further accelerates the vehicle from about Mach 0 to in excess of Mach 4 exhaust from the turbine and exhaust from the DMRJ are combined in a common nozzle disposed downstream of a combustor portion of the DMRJ functioning as an aerodynamic choke.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2015007550A1 |
source | esp@cenet |
subjects | BLASTING CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION COMBUSTION ENGINES GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS HEATING HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS INDEXING SCHEME FOR ASPECTS RELATING TONON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES ORJET-PROPULSION PLANTS INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUSSUBCLASSES OF CLASSES F01-F04 JET-PROPULSION PLANTS LIGHTING MECHANICAL ENGINEERING TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE WEAPONS |
title | Combined Cycle Integrated Combustor and Nozzle System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BULMAN%20MELVIN%20J&rft.date=2015-01-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2015007550A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |