System And Method For High Accuracy Product Classification With Limited Supervision

Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUBRAMANIAM SRIKANTH, SUN CHONG, RAVIKANT DINTYALA VENKATA SUBRAHMANYA, YALLIN HEATHER DAWN, GARERA NIKESH LUCKY, RAMPALLI NARASIMHAN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUBRAMANIAM SRIKANTH
SUN CHONG
RAVIKANT DINTYALA VENKATA SUBRAHMANYA
YALLIN HEATHER DAWN
GARERA NIKESH LUCKY
RAMPALLI NARASIMHAN
description Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2014297570A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2014297570A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2014297570A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0FalOJZi6aAgRHEsIbnagzYJyUXo2-vgAzj9w_cvhZRzZJygsgauyIMz0LgALb0GqLROQekZbsGZpBnqUcVIPWnF5Cw8iQe40ESMBmTyGN4Uv7AWi16NETe_rsS2Od_rdofedRi90miRu4cssvxQnMpjmVX5_r_rA9JLONs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><source>esp@cenet</source><creator>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</creator><creatorcontrib>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</creatorcontrib><description>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20141002&amp;DB=EPODOC&amp;CC=US&amp;NR=2014297570A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20141002&amp;DB=EPODOC&amp;CC=US&amp;NR=2014297570A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUBRAMANIAM SRIKANTH</creatorcontrib><creatorcontrib>SUN CHONG</creatorcontrib><creatorcontrib>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creatorcontrib><creatorcontrib>YALLIN HEATHER DAWN</creatorcontrib><creatorcontrib>GARERA NIKESH LUCKY</creatorcontrib><creatorcontrib>RAMPALLI NARASIMHAN</creatorcontrib><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><description>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0FalOJZi6aAgRHEsIbnagzYJyUXo2-vgAzj9w_cvhZRzZJygsgauyIMz0LgALb0GqLROQekZbsGZpBnqUcVIPWnF5Cw8iQe40ESMBmTyGN4Uv7AWi16NETe_rsS2Od_rdofedRi90miRu4cssvxQnMpjmVX5_r_rA9JLONs</recordid><startdate>20141002</startdate><enddate>20141002</enddate><creator>SUBRAMANIAM SRIKANTH</creator><creator>SUN CHONG</creator><creator>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creator><creator>YALLIN HEATHER DAWN</creator><creator>GARERA NIKESH LUCKY</creator><creator>RAMPALLI NARASIMHAN</creator><scope>EVB</scope></search><sort><creationdate>20141002</creationdate><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><author>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2014297570A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUBRAMANIAM SRIKANTH</creatorcontrib><creatorcontrib>SUN CHONG</creatorcontrib><creatorcontrib>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creatorcontrib><creatorcontrib>YALLIN HEATHER DAWN</creatorcontrib><creatorcontrib>GARERA NIKESH LUCKY</creatorcontrib><creatorcontrib>RAMPALLI NARASIMHAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUBRAMANIAM SRIKANTH</au><au>SUN CHONG</au><au>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</au><au>YALLIN HEATHER DAWN</au><au>GARERA NIKESH LUCKY</au><au>RAMPALLI NARASIMHAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><date>2014-10-02</date><risdate>2014</risdate><abstract>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2014297570A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title System And Method For High Accuracy Product Classification With Limited Supervision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUBRAMANIAM%20SRIKANTH&rft.date=2014-10-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2014297570A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true