System And Method For High Accuracy Product Classification With Limited Supervision
Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications ide...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUBRAMANIAM SRIKANTH SUN CHONG RAVIKANT DINTYALA VENKATA SUBRAHMANYA YALLIN HEATHER DAWN GARERA NIKESH LUCKY RAMPALLI NARASIMHAN |
description | Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2014297570A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2014297570A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2014297570A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0FalOJZi6aAgRHEsIbnagzYJyUXo2-vgAzj9w_cvhZRzZJygsgauyIMz0LgALb0GqLROQekZbsGZpBnqUcVIPWnF5Cw8iQe40ESMBmTyGN4Uv7AWi16NETe_rsS2Od_rdofedRi90miRu4cssvxQnMpjmVX5_r_rA9JLONs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><source>esp@cenet</source><creator>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</creator><creatorcontrib>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</creatorcontrib><description>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141002&DB=EPODOC&CC=US&NR=2014297570A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141002&DB=EPODOC&CC=US&NR=2014297570A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUBRAMANIAM SRIKANTH</creatorcontrib><creatorcontrib>SUN CHONG</creatorcontrib><creatorcontrib>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creatorcontrib><creatorcontrib>YALLIN HEATHER DAWN</creatorcontrib><creatorcontrib>GARERA NIKESH LUCKY</creatorcontrib><creatorcontrib>RAMPALLI NARASIMHAN</creatorcontrib><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><description>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0FalOJZi6aAgRHEsIbnagzYJyUXo2-vgAzj9w_cvhZRzZJygsgauyIMz0LgALb0GqLROQekZbsGZpBnqUcVIPWnF5Cw8iQe40ESMBmTyGN4Uv7AWi16NETe_rsS2Od_rdofedRi90miRu4cssvxQnMpjmVX5_r_rA9JLONs</recordid><startdate>20141002</startdate><enddate>20141002</enddate><creator>SUBRAMANIAM SRIKANTH</creator><creator>SUN CHONG</creator><creator>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creator><creator>YALLIN HEATHER DAWN</creator><creator>GARERA NIKESH LUCKY</creator><creator>RAMPALLI NARASIMHAN</creator><scope>EVB</scope></search><sort><creationdate>20141002</creationdate><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><author>SUBRAMANIAM SRIKANTH ; SUN CHONG ; RAVIKANT DINTYALA VENKATA SUBRAHMANYA ; YALLIN HEATHER DAWN ; GARERA NIKESH LUCKY ; RAMPALLI NARASIMHAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2014297570A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUBRAMANIAM SRIKANTH</creatorcontrib><creatorcontrib>SUN CHONG</creatorcontrib><creatorcontrib>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</creatorcontrib><creatorcontrib>YALLIN HEATHER DAWN</creatorcontrib><creatorcontrib>GARERA NIKESH LUCKY</creatorcontrib><creatorcontrib>RAMPALLI NARASIMHAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUBRAMANIAM SRIKANTH</au><au>SUN CHONG</au><au>RAVIKANT DINTYALA VENKATA SUBRAHMANYA</au><au>YALLIN HEATHER DAWN</au><au>GARERA NIKESH LUCKY</au><au>RAMPALLI NARASIMHAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System And Method For High Accuracy Product Classification With Limited Supervision</title><date>2014-10-02</date><risdate>2014</risdate><abstract>Systems and methods are disclosed herein for classifying records, such as product records, using a machine learning algorithm. After training a classification model according to a machine learning algorithm using an initial training set, records are classified and high confidence classifications identified. Remaining classifications are submitted to a crowdsourcing forum that validates or invalidates the classifications or marks them as to unclear to evaluate. Invalidated classifications are automatically analyzed to identify one or both of classification values and categories having a high proportion of invalidated classifications. Requests are transmitted to analysts to generate training data that is added to the training set. The process of classifying records and obtaining crowdsourced validation thereof may then repeat.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2014297570A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | System And Method For High Accuracy Product Classification With Limited Supervision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUBRAMANIAM%20SRIKANTH&rft.date=2014-10-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2014297570A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |