DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS

Certain aspects of the present disclosure support a technique for updating the state of an artificial neuron. A first state of the artificial neuron can be first determined, wherein a neuron model for the artificial neuron has a closed-form solution in continuous time and wherein state dynamics of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: HUNZINGER JASON FRANK
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUNZINGER JASON FRANK
description Certain aspects of the present disclosure support a technique for updating the state of an artificial neuron. A first state of the artificial neuron can be first determined, wherein a neuron model for the artificial neuron has a closed-form solution in continuous time and wherein state dynamics of the neuron model are divided into two or more regimes. An operating regime for the artificial neuron can be determined based, at least in part, on the first state. The state of the artificial neuron can be updated based, at least in part, on the first state of the artificial neuron and the determined operating regime.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2014074761A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2014074761A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2014074761A13</originalsourceid><addsrcrecordid>eNrjZPBzifRz9PV0dvRRcA1z9QtR8HMNDfL3U3D0c1EIBkoFBLsq-Pq7uPoEK7j5Byn4uDoG-Xn6uSsEB3h6g2iQcqBeP9eQcP8g72AeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhiYG5ibmboaGhMnCoA4lsvng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS</title><source>esp@cenet</source><creator>HUNZINGER JASON FRANK</creator><creatorcontrib>HUNZINGER JASON FRANK</creatorcontrib><description>Certain aspects of the present disclosure support a technique for updating the state of an artificial neuron. A first state of the artificial neuron can be first determined, wherein a neuron model for the artificial neuron has a closed-form solution in continuous time and wherein state dynamics of the neuron model are divided into two or more regimes. An operating regime for the artificial neuron can be determined based, at least in part, on the first state. The state of the artificial neuron can be updated based, at least in part, on the first state of the artificial neuron and the determined operating regime.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140313&amp;DB=EPODOC&amp;CC=US&amp;NR=2014074761A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140313&amp;DB=EPODOC&amp;CC=US&amp;NR=2014074761A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUNZINGER JASON FRANK</creatorcontrib><title>DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS</title><description>Certain aspects of the present disclosure support a technique for updating the state of an artificial neuron. A first state of the artificial neuron can be first determined, wherein a neuron model for the artificial neuron has a closed-form solution in continuous time and wherein state dynamics of the neuron model are divided into two or more regimes. An operating regime for the artificial neuron can be determined based, at least in part, on the first state. The state of the artificial neuron can be updated based, at least in part, on the first state of the artificial neuron and the determined operating regime.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzifRz9PV0dvRRcA1z9QtR8HMNDfL3U3D0c1EIBkoFBLsq-Pq7uPoEK7j5Byn4uDoG-Xn6uSsEB3h6g2iQcqBeP9eQcP8g72AeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhiYG5ibmboaGhMnCoA4lsvng</recordid><startdate>20140313</startdate><enddate>20140313</enddate><creator>HUNZINGER JASON FRANK</creator><scope>EVB</scope></search><sort><creationdate>20140313</creationdate><title>DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS</title><author>HUNZINGER JASON FRANK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2014074761A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUNZINGER JASON FRANK</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUNZINGER JASON FRANK</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS</title><date>2014-03-13</date><risdate>2014</risdate><abstract>Certain aspects of the present disclosure support a technique for updating the state of an artificial neuron. A first state of the artificial neuron can be first determined, wherein a neuron model for the artificial neuron has a closed-form solution in continuous time and wherein state dynamics of the neuron model are divided into two or more regimes. An operating regime for the artificial neuron can be determined based, at least in part, on the first state. The state of the artificial neuron can be updated based, at least in part, on the first state of the artificial neuron and the determined operating regime.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2014074761A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DYNAMICAL EVENT NEURON AND SYNAPSE MODELS FOR LEARNING SPIKING NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUNZINGER%20JASON%20FRANK&rft.date=2014-03-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2014074761A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true