INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS
The present invention relates to an inertial micro-sensor of angular displacements comprising at least one inertial mass (112, 1210) movable in space (x, y, z); an exciter (131) configured to generate a first vibratory movement of the inertial mass along a first direction (X) included in the plane (...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DEIMERLY YANNICK JOURDAN GUILLAUME |
description | The present invention relates to an inertial micro-sensor of angular displacements comprising at least one inertial mass (112, 1210) movable in space (x, y, z); an exciter (131) configured to generate a first vibratory movement of the inertial mass along a first direction (X) included in the plane (x, y), so as to generate a first Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around a second direction (Y) included in the plane (x, y) and perpendicular to the first direction (X); an exciter (131) configured to generate a second vibratory movement of the inertial mass along the second direction (Y), so as to generate a second Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around the first direction (X), and means for detecting the first Coriolis force and the second Coriolis force, characterized by the fact that the detection means comprise a common detector for the first Coriolis force and the second Coriolis force and configured to produce an electrical signal processed by a processing circuit so as to distinguish a first component of the electrical signal corresponding to the first Coriolis force and a second component of the electrical signal corresponding to the second Coriolis force. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2013205897A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2013205897A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2013205897A13</originalsourceid><addsrcrecordid>eNrjZNDz9HMNCvF09FHw9XQO8tcNdvUL9g9S8HdTcPRzD_VxDFJw8QwO8HF0dvV19QsJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGxkYGphaW5o6GxsSpAgCIbibX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS</title><source>esp@cenet</source><creator>DEIMERLY YANNICK ; JOURDAN GUILLAUME</creator><creatorcontrib>DEIMERLY YANNICK ; JOURDAN GUILLAUME</creatorcontrib><description>The present invention relates to an inertial micro-sensor of angular displacements comprising at least one inertial mass (112, 1210) movable in space (x, y, z); an exciter (131) configured to generate a first vibratory movement of the inertial mass along a first direction (X) included in the plane (x, y), so as to generate a first Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around a second direction (Y) included in the plane (x, y) and perpendicular to the first direction (X); an exciter (131) configured to generate a second vibratory movement of the inertial mass along the second direction (Y), so as to generate a second Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around the first direction (X), and means for detecting the first Coriolis force and the second Coriolis force, characterized by the fact that the detection means comprise a common detector for the first Coriolis force and the second Coriolis force and configured to produce an electrical signal processed by a processing circuit so as to distinguish a first component of the electrical signal corresponding to the first Coriolis force and a second component of the electrical signal corresponding to the second Coriolis force.</description><language>eng</language><subject>GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20130815&DB=EPODOC&CC=US&NR=2013205897A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20130815&DB=EPODOC&CC=US&NR=2013205897A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DEIMERLY YANNICK</creatorcontrib><creatorcontrib>JOURDAN GUILLAUME</creatorcontrib><title>INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS</title><description>The present invention relates to an inertial micro-sensor of angular displacements comprising at least one inertial mass (112, 1210) movable in space (x, y, z); an exciter (131) configured to generate a first vibratory movement of the inertial mass along a first direction (X) included in the plane (x, y), so as to generate a first Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around a second direction (Y) included in the plane (x, y) and perpendicular to the first direction (X); an exciter (131) configured to generate a second vibratory movement of the inertial mass along the second direction (Y), so as to generate a second Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around the first direction (X), and means for detecting the first Coriolis force and the second Coriolis force, characterized by the fact that the detection means comprise a common detector for the first Coriolis force and the second Coriolis force and configured to produce an electrical signal processed by a processing circuit so as to distinguish a first component of the electrical signal corresponding to the first Coriolis force and a second component of the electrical signal corresponding to the second Coriolis force.</description><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDz9HMNCvF09FHw9XQO8tcNdvUL9g9S8HdTcPRzD_VxDFJw8QwO8HF0dvV19QsJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGxkYGphaW5o6GxsSpAgCIbibX</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>DEIMERLY YANNICK</creator><creator>JOURDAN GUILLAUME</creator><scope>EVB</scope></search><sort><creationdate>20130815</creationdate><title>INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS</title><author>DEIMERLY YANNICK ; JOURDAN GUILLAUME</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2013205897A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2013</creationdate><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>DEIMERLY YANNICK</creatorcontrib><creatorcontrib>JOURDAN GUILLAUME</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DEIMERLY YANNICK</au><au>JOURDAN GUILLAUME</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS</title><date>2013-08-15</date><risdate>2013</risdate><abstract>The present invention relates to an inertial micro-sensor of angular displacements comprising at least one inertial mass (112, 1210) movable in space (x, y, z); an exciter (131) configured to generate a first vibratory movement of the inertial mass along a first direction (X) included in the plane (x, y), so as to generate a first Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around a second direction (Y) included in the plane (x, y) and perpendicular to the first direction (X); an exciter (131) configured to generate a second vibratory movement of the inertial mass along the second direction (Y), so as to generate a second Coriolis force induced by an angular displacement of the inertial mass (112, 1210) around the first direction (X), and means for detecting the first Coriolis force and the second Coriolis force, characterized by the fact that the detection means comprise a common detector for the first Coriolis force and the second Coriolis force and configured to produce an electrical signal processed by a processing circuit so as to distinguish a first component of the electrical signal corresponding to the first Coriolis force and a second component of the electrical signal corresponding to the second Coriolis force.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2013205897A1 |
source | esp@cenet |
subjects | GYROSCOPIC INSTRUMENTS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS SURVEYING TESTING |
title | INERTIAL MICRO-SENSOR OF ANGULAR DISPLACEMENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DEIMERLY%20YANNICK&rft.date=2013-08-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2013205897A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |