ONLINE SIMULATION MODEL OPTIMIZATION

An online simulation model optimization receives data representative of a business process captured in real time to form instance metrics, aggregates the instance metrics to form aggregated instance metrics, and uses a particle filter for filtering the aggregated instance metrics to form calibrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SOLOMON ANDREI, BENAYON JAY W, LITOIU MARIN, SZALOKY VINCENT F, LAU ALEX T. K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SOLOMON ANDREI
BENAYON JAY W
LITOIU MARIN
SZALOKY VINCENT F
LAU ALEX T. K
description An online simulation model optimization receives data representative of a business process captured in real time to form instance metrics, aggregates the instance metrics to form aggregated instance metrics, and uses a particle filter for filtering the aggregated instance metrics to form calibrated data. The process iteratively computes an output value using the calibrated data, by a simulation model. Responsive to a determination that the output value is not within a predetermined tolerance of an error threshold, the process adjusts a weight previously assigned to an aggregated instance metric by the particle filter to form recalibrated data, whereby the recalibrated data is submitted to the simulation model for computation. Responsive to a determination that the output value is within the predetermined tolerance, the process sends a result to a correction selection process of a business process optimizer, the result comprising the output value, the calibrated data, and/or the recalibrated data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2013103373A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2013103373A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2013103373A13</originalsourceid><addsrcrecordid>eNrjZFDx9_Px9HNVCPb0DfVxDPH091Pw9Xdx9VHwDwjx9PWMAgvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjA0NjQwNjY3NjR0Nj4lQBAClmJC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ONLINE SIMULATION MODEL OPTIMIZATION</title><source>esp@cenet</source><creator>SOLOMON ANDREI ; BENAYON JAY W ; LITOIU MARIN ; SZALOKY VINCENT F ; LAU ALEX T. K</creator><creatorcontrib>SOLOMON ANDREI ; BENAYON JAY W ; LITOIU MARIN ; SZALOKY VINCENT F ; LAU ALEX T. K</creatorcontrib><description>An online simulation model optimization receives data representative of a business process captured in real time to form instance metrics, aggregates the instance metrics to form aggregated instance metrics, and uses a particle filter for filtering the aggregated instance metrics to form calibrated data. The process iteratively computes an output value using the calibrated data, by a simulation model. Responsive to a determination that the output value is not within a predetermined tolerance of an error threshold, the process adjusts a weight previously assigned to an aggregated instance metric by the particle filter to form recalibrated data, whereby the recalibrated data is submitted to the simulation model for computation. Responsive to a determination that the output value is within the predetermined tolerance, the process sends a result to a correction selection process of a business process optimizer, the result comprising the output value, the calibrated data, and/or the recalibrated data.</description><language>eng</language><subject>ANALOGUE COMPUTERS ; CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130425&amp;DB=EPODOC&amp;CC=US&amp;NR=2013103373A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130425&amp;DB=EPODOC&amp;CC=US&amp;NR=2013103373A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SOLOMON ANDREI</creatorcontrib><creatorcontrib>BENAYON JAY W</creatorcontrib><creatorcontrib>LITOIU MARIN</creatorcontrib><creatorcontrib>SZALOKY VINCENT F</creatorcontrib><creatorcontrib>LAU ALEX T. K</creatorcontrib><title>ONLINE SIMULATION MODEL OPTIMIZATION</title><description>An online simulation model optimization receives data representative of a business process captured in real time to form instance metrics, aggregates the instance metrics to form aggregated instance metrics, and uses a particle filter for filtering the aggregated instance metrics to form calibrated data. The process iteratively computes an output value using the calibrated data, by a simulation model. Responsive to a determination that the output value is not within a predetermined tolerance of an error threshold, the process adjusts a weight previously assigned to an aggregated instance metric by the particle filter to form recalibrated data, whereby the recalibrated data is submitted to the simulation model for computation. Responsive to a determination that the output value is within the predetermined tolerance, the process sends a result to a correction selection process of a business process optimizer, the result comprising the output value, the calibrated data, and/or the recalibrated data.</description><subject>ANALOGUE COMPUTERS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFDx9_Px9HNVCPb0DfVxDPH091Pw9Xdx9VHwDwjx9PWMAgvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjA0NjQwNjY3NjR0Nj4lQBAClmJC8</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>SOLOMON ANDREI</creator><creator>BENAYON JAY W</creator><creator>LITOIU MARIN</creator><creator>SZALOKY VINCENT F</creator><creator>LAU ALEX T. K</creator><scope>EVB</scope></search><sort><creationdate>20130425</creationdate><title>ONLINE SIMULATION MODEL OPTIMIZATION</title><author>SOLOMON ANDREI ; BENAYON JAY W ; LITOIU MARIN ; SZALOKY VINCENT F ; LAU ALEX T. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2013103373A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANALOGUE COMPUTERS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SOLOMON ANDREI</creatorcontrib><creatorcontrib>BENAYON JAY W</creatorcontrib><creatorcontrib>LITOIU MARIN</creatorcontrib><creatorcontrib>SZALOKY VINCENT F</creatorcontrib><creatorcontrib>LAU ALEX T. K</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SOLOMON ANDREI</au><au>BENAYON JAY W</au><au>LITOIU MARIN</au><au>SZALOKY VINCENT F</au><au>LAU ALEX T. K</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ONLINE SIMULATION MODEL OPTIMIZATION</title><date>2013-04-25</date><risdate>2013</risdate><abstract>An online simulation model optimization receives data representative of a business process captured in real time to form instance metrics, aggregates the instance metrics to form aggregated instance metrics, and uses a particle filter for filtering the aggregated instance metrics to form calibrated data. The process iteratively computes an output value using the calibrated data, by a simulation model. Responsive to a determination that the output value is not within a predetermined tolerance of an error threshold, the process adjusts a weight previously assigned to an aggregated instance metric by the particle filter to form recalibrated data, whereby the recalibrated data is submitted to the simulation model for computation. Responsive to a determination that the output value is within the predetermined tolerance, the process sends a result to a correction selection process of a business process optimizer, the result comprising the output value, the calibrated data, and/or the recalibrated data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2013103373A1
source esp@cenet
subjects ANALOGUE COMPUTERS
CALCULATING
COMPUTING
COUNTING
PHYSICS
title ONLINE SIMULATION MODEL OPTIMIZATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SOLOMON%20ANDREI&rft.date=2013-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2013103373A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true