Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping

Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, prefera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHIKICHEV IVAN, BAUMSTEIN ANATOLY, LAZARATOS SPYRIDON K, ROUTH PARTHA S, WANG KE
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHIKICHEV IVAN
BAUMSTEIN ANATOLY
LAZARATOS SPYRIDON K
ROUTH PARTHA S
WANG KE
description Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2013028052A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2013028052A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2013028052A13</originalsourceid><addsrcrecordid>eNrjZHB2zs8rSy1KT81LTlUISixJVchPU3ALzclRCE8sS03LTM1JUfAEqSjOzM9TCC3OzEtXCC5ITS4pSsxRCM5ILAAK8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDYwMjCwNTI0dDY-JUAQDw5DKx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><source>esp@cenet</source><creator>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</creator><creatorcontrib>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</creatorcontrib><description>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130131&amp;DB=EPODOC&amp;CC=US&amp;NR=2013028052A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130131&amp;DB=EPODOC&amp;CC=US&amp;NR=2013028052A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHIKICHEV IVAN</creatorcontrib><creatorcontrib>BAUMSTEIN ANATOLY</creatorcontrib><creatorcontrib>LAZARATOS SPYRIDON K</creatorcontrib><creatorcontrib>ROUTH PARTHA S</creatorcontrib><creatorcontrib>WANG KE</creatorcontrib><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><description>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2zs8rSy1KT81LTlUISixJVchPU3ALzclRCE8sS03LTM1JUfAEqSjOzM9TCC3OzEtXCC5ITS4pSsxRCM5ILAAK8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDYwMjCwNTI0dDY-JUAQDw5DKx</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>CHIKICHEV IVAN</creator><creator>BAUMSTEIN ANATOLY</creator><creator>LAZARATOS SPYRIDON K</creator><creator>ROUTH PARTHA S</creator><creator>WANG KE</creator><scope>EVB</scope></search><sort><creationdate>20130131</creationdate><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><author>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2013028052A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2013</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>CHIKICHEV IVAN</creatorcontrib><creatorcontrib>BAUMSTEIN ANATOLY</creatorcontrib><creatorcontrib>LAZARATOS SPYRIDON K</creatorcontrib><creatorcontrib>ROUTH PARTHA S</creatorcontrib><creatorcontrib>WANG KE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHIKICHEV IVAN</au><au>BAUMSTEIN ANATOLY</au><au>LAZARATOS SPYRIDON K</au><au>ROUTH PARTHA S</au><au>WANG KE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><date>2013-01-31</date><risdate>2013</risdate><abstract>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2013028052A1
source esp@cenet
subjects DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHIKICHEV%20IVAN&rft.date=2013-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2013028052A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true