Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping
Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, prefera...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHIKICHEV IVAN BAUMSTEIN ANATOLY LAZARATOS SPYRIDON K ROUTH PARTHA S WANG KE |
description | Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2013028052A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2013028052A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2013028052A13</originalsourceid><addsrcrecordid>eNrjZHB2zs8rSy1KT81LTlUISixJVchPU3ALzclRCE8sS03LTM1JUfAEqSjOzM9TCC3OzEtXCC5ITS4pSsxRCM5ILAAK8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDYwMjCwNTI0dDY-JUAQDw5DKx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><source>esp@cenet</source><creator>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</creator><creatorcontrib>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</creatorcontrib><description>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20130131&DB=EPODOC&CC=US&NR=2013028052A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20130131&DB=EPODOC&CC=US&NR=2013028052A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHIKICHEV IVAN</creatorcontrib><creatorcontrib>BAUMSTEIN ANATOLY</creatorcontrib><creatorcontrib>LAZARATOS SPYRIDON K</creatorcontrib><creatorcontrib>ROUTH PARTHA S</creatorcontrib><creatorcontrib>WANG KE</creatorcontrib><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><description>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2zs8rSy1KT81LTlUISixJVchPU3ALzclRCE8sS03LTM1JUfAEqSjOzM9TCC3OzEtXCC5ITS4pSsxRCM5ILAAK8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDYwMjCwNTI0dDY-JUAQDw5DKx</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>CHIKICHEV IVAN</creator><creator>BAUMSTEIN ANATOLY</creator><creator>LAZARATOS SPYRIDON K</creator><creator>ROUTH PARTHA S</creator><creator>WANG KE</creator><scope>EVB</scope></search><sort><creationdate>20130131</creationdate><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><author>CHIKICHEV IVAN ; BAUMSTEIN ANATOLY ; LAZARATOS SPYRIDON K ; ROUTH PARTHA S ; WANG KE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2013028052A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2013</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>CHIKICHEV IVAN</creatorcontrib><creatorcontrib>BAUMSTEIN ANATOLY</creatorcontrib><creatorcontrib>LAZARATOS SPYRIDON K</creatorcontrib><creatorcontrib>ROUTH PARTHA S</creatorcontrib><creatorcontrib>WANG KE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHIKICHEV IVAN</au><au>BAUMSTEIN ANATOLY</au><au>LAZARATOS SPYRIDON K</au><au>ROUTH PARTHA S</au><au>WANG KE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping</title><date>2013-01-31</date><risdate>2013</risdate><abstract>Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2013028052A1 |
source | esp@cenet |
subjects | DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | Convergence Rate of FUll Wavefield Inversion Using Spectral Shaping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHIKICHEV%20IVAN&rft.date=2013-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2013028052A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |