SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS

Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHOPRA SUMIT, BANGLORE SRINIVAS, MIROWSKI PIOTR WOJCIECH, BALAKRISHNAN SUHRID
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHOPRA SUMIT
BANGLORE SRINIVAS
MIROWSKI PIOTR WOJCIECH
BALAKRISHNAN SUHRID
description Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2012150532A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2012150532A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2012150532A13</originalsourceid><addsrcrecordid>eNrjZHAOjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScHN1DAkNctUN8nT2UHD29wvx9Av1Dw1WCA5wdHZV8HH0cw91dHdV8PV3cfUJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGRoamBqbGRo6GxsSpAgDW-ixS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS</title><source>esp@cenet</source><creator>CHOPRA SUMIT ; BANGLORE SRINIVAS ; MIROWSKI PIOTR WOJCIECH ; BALAKRISHNAN SUHRID</creator><creatorcontrib>CHOPRA SUMIT ; BANGLORE SRINIVAS ; MIROWSKI PIOTR WOJCIECH ; BALAKRISHNAN SUHRID</creatorcontrib><description>Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2012</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120614&amp;DB=EPODOC&amp;CC=US&amp;NR=2012150532A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120614&amp;DB=EPODOC&amp;CC=US&amp;NR=2012150532A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHOPRA SUMIT</creatorcontrib><creatorcontrib>BANGLORE SRINIVAS</creatorcontrib><creatorcontrib>MIROWSKI PIOTR WOJCIECH</creatorcontrib><creatorcontrib>BALAKRISHNAN SUHRID</creatorcontrib><title>SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS</title><description>Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2012</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAOjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScHN1DAkNctUN8nT2UHD29wvx9Av1Dw1WCA5wdHZV8HH0cw91dHdV8PV3cfUJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGRoamBqbGRo6GxsSpAgDW-ixS</recordid><startdate>20120614</startdate><enddate>20120614</enddate><creator>CHOPRA SUMIT</creator><creator>BANGLORE SRINIVAS</creator><creator>MIROWSKI PIOTR WOJCIECH</creator><creator>BALAKRISHNAN SUHRID</creator><scope>EVB</scope></search><sort><creationdate>20120614</creationdate><title>SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS</title><author>CHOPRA SUMIT ; BANGLORE SRINIVAS ; MIROWSKI PIOTR WOJCIECH ; BALAKRISHNAN SUHRID</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2012150532A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHOPRA SUMIT</creatorcontrib><creatorcontrib>BANGLORE SRINIVAS</creatorcontrib><creatorcontrib>MIROWSKI PIOTR WOJCIECH</creatorcontrib><creatorcontrib>BALAKRISHNAN SUHRID</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHOPRA SUMIT</au><au>BANGLORE SRINIVAS</au><au>MIROWSKI PIOTR WOJCIECH</au><au>BALAKRISHNAN SUHRID</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS</title><date>2012-06-14</date><risdate>2012</risdate><abstract>Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2012150532A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHOPRA%20SUMIT&rft.date=2012-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2012150532A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true