CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER
A cantilever beam structural resonant-type integrated optical waveguide accelerometer, includes an input waveguide (1), a dissymmetrical structural Mach-Zehnder interferometer (2), a micro-mechanical vibration cantilever beam (3), a short curved waveguide (4) and an output waveguide (5); all the wav...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XUE XIAOJUN ZHANG XIAOYANG WU PENGQIN ZHANG TONG |
description | A cantilever beam structural resonant-type integrated optical waveguide accelerometer, includes an input waveguide (1), a dissymmetrical structural Mach-Zehnder interferometer (2), a micro-mechanical vibration cantilever beam (3), a short curved waveguide (4) and an output waveguide (5); all the waveguide structures and the cantilever beam use the integrated optical micromachining technique, and the device single-scale integration can be realized by using the temperature-insensitive organic polymer optical waveguide structure and the organic polymer substrate, the key technique indexes such as detection sensitivity, dynamic range are extensively adjusted. The phase difference of the optical signal can be measured by detecting the optical intensity of the resonant frequency of the optical circuit so as to achieve high sensitive acceleration detection, and to be free from the effect of the ambient temperature disturbance and waveguide birefringence. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2011303008A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2011303008A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2011303008A13</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEsDqLeQ8C5kJrF9Zh-1kD_ODmpOJUicRIt1PvHDl6A0zu8z1oFR434Cj1Yn0C1DsLRSWSqNCO0zbIzuXXQvhGUTIJCt514t4Ar9SijL6DJOVTgtoaAt2r1GJ9z2v26UfszxF2yNL2HNE_jPb3SZ4jhYPLcGmvMkXL7n_oCA2oxNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER</title><source>esp@cenet</source><creator>XUE XIAOJUN ; ZHANG XIAOYANG ; WU PENGQIN ; ZHANG TONG</creator><creatorcontrib>XUE XIAOJUN ; ZHANG XIAOYANG ; WU PENGQIN ; ZHANG TONG</creatorcontrib><description>A cantilever beam structural resonant-type integrated optical waveguide accelerometer, includes an input waveguide (1), a dissymmetrical structural Mach-Zehnder interferometer (2), a micro-mechanical vibration cantilever beam (3), a short curved waveguide (4) and an output waveguide (5); all the waveguide structures and the cantilever beam use the integrated optical micromachining technique, and the device single-scale integration can be realized by using the temperature-insensitive organic polymer optical waveguide structure and the organic polymer substrate, the key technique indexes such as detection sensitivity, dynamic range are extensively adjusted. The phase difference of the optical signal can be measured by detecting the optical intensity of the resonant frequency of the optical circuit so as to achieve high sensitive acceleration detection, and to be free from the effect of the ambient temperature disturbance and waveguide birefringence.</description><language>eng</language><subject>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT ; MEASURING ; MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK ; PHYSICS ; TESTING</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111215&DB=EPODOC&CC=US&NR=2011303008A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111215&DB=EPODOC&CC=US&NR=2011303008A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XUE XIAOJUN</creatorcontrib><creatorcontrib>ZHANG XIAOYANG</creatorcontrib><creatorcontrib>WU PENGQIN</creatorcontrib><creatorcontrib>ZHANG TONG</creatorcontrib><title>CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER</title><description>A cantilever beam structural resonant-type integrated optical waveguide accelerometer, includes an input waveguide (1), a dissymmetrical structural Mach-Zehnder interferometer (2), a micro-mechanical vibration cantilever beam (3), a short curved waveguide (4) and an output waveguide (5); all the waveguide structures and the cantilever beam use the integrated optical micromachining technique, and the device single-scale integration can be realized by using the temperature-insensitive organic polymer optical waveguide structure and the organic polymer substrate, the key technique indexes such as detection sensitivity, dynamic range are extensively adjusted. The phase difference of the optical signal can be measured by detecting the optical intensity of the resonant frequency of the optical circuit so as to achieve high sensitive acceleration detection, and to be free from the effect of the ambient temperature disturbance and waveguide birefringence.</description><subject>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</subject><subject>MEASURING</subject><subject>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEsDqLeQ8C5kJrF9Zh-1kD_ODmpOJUicRIt1PvHDl6A0zu8z1oFR434Cj1Yn0C1DsLRSWSqNCO0zbIzuXXQvhGUTIJCt514t4Ar9SijL6DJOVTgtoaAt2r1GJ9z2v26UfszxF2yNL2HNE_jPb3SZ4jhYPLcGmvMkXL7n_oCA2oxNQ</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>XUE XIAOJUN</creator><creator>ZHANG XIAOYANG</creator><creator>WU PENGQIN</creator><creator>ZHANG TONG</creator><scope>EVB</scope></search><sort><creationdate>20111215</creationdate><title>CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER</title><author>XUE XIAOJUN ; ZHANG XIAOYANG ; WU PENGQIN ; ZHANG TONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2011303008A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2011</creationdate><topic>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</topic><topic>MEASURING</topic><topic>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XUE XIAOJUN</creatorcontrib><creatorcontrib>ZHANG XIAOYANG</creatorcontrib><creatorcontrib>WU PENGQIN</creatorcontrib><creatorcontrib>ZHANG TONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XUE XIAOJUN</au><au>ZHANG XIAOYANG</au><au>WU PENGQIN</au><au>ZHANG TONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER</title><date>2011-12-15</date><risdate>2011</risdate><abstract>A cantilever beam structural resonant-type integrated optical waveguide accelerometer, includes an input waveguide (1), a dissymmetrical structural Mach-Zehnder interferometer (2), a micro-mechanical vibration cantilever beam (3), a short curved waveguide (4) and an output waveguide (5); all the waveguide structures and the cantilever beam use the integrated optical micromachining technique, and the device single-scale integration can be realized by using the temperature-insensitive organic polymer optical waveguide structure and the organic polymer substrate, the key technique indexes such as detection sensitivity, dynamic range are extensively adjusted. The phase difference of the optical signal can be measured by detecting the optical intensity of the resonant frequency of the optical circuit so as to achieve high sensitive acceleration detection, and to be free from the effect of the ambient temperature disturbance and waveguide birefringence.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2011303008A1 |
source | esp@cenet |
subjects | INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT MEASURING MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK PHYSICS TESTING |
title | CANTILEVER BEAM STRUCTURAL RESONANT-TYPE INTEGRATED OPTICAL WAVEGUIDE ACCELEROMETER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XUE%20XIAOJUN&rft.date=2011-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2011303008A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |