NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD

In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SONG IICK HO, OH JONG HO, AN TAE HUN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SONG IICK HO
OH JONG HO
AN TAE HUN
description In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2010157785A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2010157785A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2010157785A13</originalsourceid><addsrcrecordid>eNrjZAjwc3UMUvD1UXBxdfZ38fRzV_B1DfHwd1Fwcgx2dVHw9wPxgzyddd08g4JDFIKBqp09FBz9gAqCHP2ATB9XP_cQD4UQjyDXYA9_HxceBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhgaGpubmHqaGhMnCoA1-4vaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><source>esp@cenet</source><creator>SONG IICK HO ; OH JONG HO ; AN TAE HUN</creator><creatorcontrib>SONG IICK HO ; OH JONG HO ; AN TAE HUN</creatorcontrib><description>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; MULTIPLEX COMMUNICATION</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100624&amp;DB=EPODOC&amp;CC=US&amp;NR=2010157785A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100624&amp;DB=EPODOC&amp;CC=US&amp;NR=2010157785A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SONG IICK HO</creatorcontrib><creatorcontrib>OH JONG HO</creatorcontrib><creatorcontrib>AN TAE HUN</creatorcontrib><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><description>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>MULTIPLEX COMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwc3UMUvD1UXBxdfZ38fRzV_B1DfHwd1Fwcgx2dVHw9wPxgzyddd08g4JDFIKBqp09FBz9gAqCHP2ATB9XP_cQD4UQjyDXYA9_HxceBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhgaGpubmHqaGhMnCoA1-4vaw</recordid><startdate>20100624</startdate><enddate>20100624</enddate><creator>SONG IICK HO</creator><creator>OH JONG HO</creator><creator>AN TAE HUN</creator><scope>EVB</scope></search><sort><creationdate>20100624</creationdate><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><author>SONG IICK HO ; OH JONG HO ; AN TAE HUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2010157785A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>MULTIPLEX COMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SONG IICK HO</creatorcontrib><creatorcontrib>OH JONG HO</creatorcontrib><creatorcontrib>AN TAE HUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SONG IICK HO</au><au>OH JONG HO</au><au>AN TAE HUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><date>2010-06-24</date><risdate>2010</risdate><abstract>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2010157785A1
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
MULTIPLEX COMMUNICATION
title NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SONG%20IICK%20HO&rft.date=2010-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2010157785A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true