NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD
In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a h...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SONG IICK HO OH JONG HO AN TAE HUN |
description | In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2010157785A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2010157785A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2010157785A13</originalsourceid><addsrcrecordid>eNrjZAjwc3UMUvD1UXBxdfZ38fRzV_B1DfHwd1Fwcgx2dVHw9wPxgzyddd08g4JDFIKBqp09FBz9gAqCHP2ATB9XP_cQD4UQjyDXYA9_HxceBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhgaGpubmHqaGhMnCoA1-4vaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><source>esp@cenet</source><creator>SONG IICK HO ; OH JONG HO ; AN TAE HUN</creator><creatorcontrib>SONG IICK HO ; OH JONG HO ; AN TAE HUN</creatorcontrib><description>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; MULTIPLEX COMMUNICATION</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100624&DB=EPODOC&CC=US&NR=2010157785A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100624&DB=EPODOC&CC=US&NR=2010157785A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SONG IICK HO</creatorcontrib><creatorcontrib>OH JONG HO</creatorcontrib><creatorcontrib>AN TAE HUN</creatorcontrib><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><description>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>MULTIPLEX COMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwc3UMUvD1UXBxdfZ38fRzV_B1DfHwd1Fwcgx2dVHw9wPxgzyddd08g4JDFIKBqp09FBz9gAqCHP2ATB9XP_cQD4UQjyDXYA9_HxceBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGhgaGpubmHqaGhMnCoA1-4vaw</recordid><startdate>20100624</startdate><enddate>20100624</enddate><creator>SONG IICK HO</creator><creator>OH JONG HO</creator><creator>AN TAE HUN</creator><scope>EVB</scope></search><sort><creationdate>20100624</creationdate><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><author>SONG IICK HO ; OH JONG HO ; AN TAE HUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2010157785A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>MULTIPLEX COMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SONG IICK HO</creatorcontrib><creatorcontrib>OH JONG HO</creatorcontrib><creatorcontrib>AN TAE HUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SONG IICK HO</au><au>OH JONG HO</au><au>AN TAE HUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD</title><date>2010-06-24</date><risdate>2010</risdate><abstract>In this invention, we propose a near maximum likelihood (ML) method for the decoding of multiple input multiple output systems. By employing the metric-first search method, Schnorr-Euchner enumeration, and branch length thresholds in a single frame systematically, the proposed technique provides a higher efficiency than other conventional near ML decoding schemes. From simulation results, it is confirmed that the proposed method has lower computational complexity than other near ML decoders while maintaining the bit error rate (BER) very close to the ML performance. The proposed method in addition possesses the capability of allowing flexible tradeoffs between the computational complexity and BER performance.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2010157785A1 |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY MULTIPLEX COMMUNICATION |
title | NEAR ML DECODING METHOD BASED ON METRIC-FIRST SEARCH AND BRANCH LENGTH THRESHOLD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SONG%20IICK%20HO&rft.date=2010-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2010157785A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |