System and method for generating a terrain model for autonomous navigation in vegetation

The disclosed terrain model is a generative, probabilistic approach to modeling terrain that exploits the 3D spatial structure inherent in outdoor domains and an array of noisy but abundant sensor data to simultaneously estimate ground height, vegetation height and classify obstacles and other areas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WELLINGTON CARL K, COURVILLE AARON C, STENTZ ANTHONY J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WELLINGTON CARL K
COURVILLE AARON C
STENTZ ANTHONY J
description The disclosed terrain model is a generative, probabilistic approach to modeling terrain that exploits the 3D spatial structure inherent in outdoor domains and an array of noisy but abundant sensor data to simultaneously estimate ground height, vegetation height and classify obstacles and other areas of interest, even in dense non-penetrable vegetation. Joint inference of ground height, class height and class identity over the whole model results in more accurate estimation of each quantity. Vertical spatial constraints are imposed on voxels within a column via a hidden semi-Markov model. Horizontal spatial constraints are enforced on neighboring columns of voxels via two interacting Markov random fields and a latent variable. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2010021052A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2010021052A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2010021052A13</originalsourceid><addsrcrecordid>eNqNzUEKwjAQBdBsXIh6hwHXQhLxAFIU91VwVwY7jYFmpiTTgre3FA_g6vP5D_7aPOtPUUqA3EIifUsLnWQIxJRRIwdAUMoZI0OSlvplxlGFJclYgHGKYZbCMJOJAunStmbVYV9o98uN2V8v9-p2oEEaKgO-5gttHrW3zlrv7Mmf3fE_9QWmzDt2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for generating a terrain model for autonomous navigation in vegetation</title><source>esp@cenet</source><creator>WELLINGTON CARL K ; COURVILLE AARON C ; STENTZ ANTHONY J</creator><creatorcontrib>WELLINGTON CARL K ; COURVILLE AARON C ; STENTZ ANTHONY J</creatorcontrib><description>The disclosed terrain model is a generative, probabilistic approach to modeling terrain that exploits the 3D spatial structure inherent in outdoor domains and an array of noisy but abundant sensor data to simultaneously estimate ground height, vegetation height and classify obstacles and other areas of interest, even in dense non-penetrable vegetation. Joint inference of ground height, class height and class identity over the whole model results in more accurate estimation of each quantity. Vertical spatial constraints are imposed on voxels within a column via a hidden semi-Markov model. Horizontal spatial constraints are enforced on neighboring columns of voxels via two interacting Markov random fields and a latent variable. Because of the rules governing abstracts, this abstract should not be used to construe the claims.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100128&amp;DB=EPODOC&amp;CC=US&amp;NR=2010021052A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100128&amp;DB=EPODOC&amp;CC=US&amp;NR=2010021052A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WELLINGTON CARL K</creatorcontrib><creatorcontrib>COURVILLE AARON C</creatorcontrib><creatorcontrib>STENTZ ANTHONY J</creatorcontrib><title>System and method for generating a terrain model for autonomous navigation in vegetation</title><description>The disclosed terrain model is a generative, probabilistic approach to modeling terrain that exploits the 3D spatial structure inherent in outdoor domains and an array of noisy but abundant sensor data to simultaneously estimate ground height, vegetation height and classify obstacles and other areas of interest, even in dense non-penetrable vegetation. Joint inference of ground height, class height and class identity over the whole model results in more accurate estimation of each quantity. Vertical spatial constraints are imposed on voxels within a column via a hidden semi-Markov model. Horizontal spatial constraints are enforced on neighboring columns of voxels via two interacting Markov random fields and a latent variable. Because of the rules governing abstracts, this abstract should not be used to construe the claims.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzUEKwjAQBdBsXIh6hwHXQhLxAFIU91VwVwY7jYFmpiTTgre3FA_g6vP5D_7aPOtPUUqA3EIifUsLnWQIxJRRIwdAUMoZI0OSlvplxlGFJclYgHGKYZbCMJOJAunStmbVYV9o98uN2V8v9-p2oEEaKgO-5gttHrW3zlrv7Mmf3fE_9QWmzDt2</recordid><startdate>20100128</startdate><enddate>20100128</enddate><creator>WELLINGTON CARL K</creator><creator>COURVILLE AARON C</creator><creator>STENTZ ANTHONY J</creator><scope>EVB</scope></search><sort><creationdate>20100128</creationdate><title>System and method for generating a terrain model for autonomous navigation in vegetation</title><author>WELLINGTON CARL K ; COURVILLE AARON C ; STENTZ ANTHONY J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2010021052A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WELLINGTON CARL K</creatorcontrib><creatorcontrib>COURVILLE AARON C</creatorcontrib><creatorcontrib>STENTZ ANTHONY J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WELLINGTON CARL K</au><au>COURVILLE AARON C</au><au>STENTZ ANTHONY J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for generating a terrain model for autonomous navigation in vegetation</title><date>2010-01-28</date><risdate>2010</risdate><abstract>The disclosed terrain model is a generative, probabilistic approach to modeling terrain that exploits the 3D spatial structure inherent in outdoor domains and an array of noisy but abundant sensor data to simultaneously estimate ground height, vegetation height and classify obstacles and other areas of interest, even in dense non-penetrable vegetation. Joint inference of ground height, class height and class identity over the whole model results in more accurate estimation of each quantity. Vertical spatial constraints are imposed on voxels within a column via a hidden semi-Markov model. Horizontal spatial constraints are enforced on neighboring columns of voxels via two interacting Markov random fields and a latent variable. Because of the rules governing abstracts, this abstract should not be used to construe the claims.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2010021052A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title System and method for generating a terrain model for autonomous navigation in vegetation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WELLINGTON%20CARL%20K&rft.date=2010-01-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2010021052A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true