Artificial proteins with reduced immunogenicity

The invention relates to artificial modified proteins, preferably fusion proteins, having a reduced immunogenicity compared to the parent non-modified molecule when exposed to a species in vivo. The invention relates, above all, to novel immunoglobulin fusion proteins which essentially consist of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAKER MATTHEW, CARR FRANCIS J, TIM JONES, GILLIES STEPHEN, CARTER GRAHAM, WAY JEFFREY C, HAMILTON ANILA, WATKINS JOHN, WILLIAMS STEPHEN, HANLON MARIAN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to artificial modified proteins, preferably fusion proteins, having a reduced immunogenicity compared to the parent non-modified molecule when exposed to a species in vivo. The invention relates, above all, to novel immunoglobulin fusion proteins which essentially consist of an immunoglobulin molecule or a fragment thereof covalently fused via its C-terminus to the N-terminus of a biologically active non-immunoglobulin molecule, preferably a polypeptide or protein or a biologically active fragment thereof. In a specific embodiment, the invention relates to fusion proteins consisting of an Fc portion of an antibody which is fused as mentioned to the non-immunological target molecule which elicits biological or pharmacological efficacy. The molecules of the invention have amino acid sequences which are altered in one or more amino acid residue positions but have in principal the same biological activity as compared with the non-altered molecules. The changes are made in regions of the molecules which are identified as T-cell epitopes, which contribute to an immune reaction in a living host. Thus, the invention also relates to a novel method of making such fusion proteins by identifying said epitopes comprising calculation of T-cell epitope values for MHC Class II molecule binding sites in a peptide by computer-aided methods.