Differential front-end continuous-time sigma-delta ADC using chopper stabilisation
A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MORROW PAUL J MINOGUE PASCHAL T MANSSON HANS J.O LYDEN COLIN G KEANE MIKE D ADAMS ROBERT W DEL MAR CHAMARRO MARTI MARIA O'BRIEN RICHARD T |
description | A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from a flash ADC. An integrator has a differential input that integrates the difference of the generated current by the multi-bit IDAC and the input signal current on a continuous-time basis. The input stage further comprises a first biasing current source and a second biasing current source which bias the input stage in a mid-scale condition. A first summing node connects to the first differential input line, a first differential input of the integrator and the first output branch. A second summing node connects to the second differential input line, a second differential input of the integrator and the second output branch. A set of chopping switches alternately connect the biasing current sources to the summing nodes in a first configuration and a second, reversed, configuration. The converter receives a modulator clock signal at a frequency FS and the chopping switches can operate at FS or a binary subdivision thereof. The integrator amplifier can also be chopper-stabilized. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2006139192A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2006139192A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2006139192A13</originalsourceid><addsrcrecordid>eNqNyrsKwkAQQNE0FqL-w4D1Qh4gpAyJYu2jDmMyGwc2s0tm8v9a-AFW9xR3m9069p4WEmMM4Jco5khGGL5gWeOqzngmUJ5mdCMFQ2i6FlZlmWB4x5RoATV8cWBF4yj7bOMxKB1-3WXHy_nRXh2l2JMmHEjI-ue9zPNTUdVFXTZF9d_1ARUbOTk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Differential front-end continuous-time sigma-delta ADC using chopper stabilisation</title><source>esp@cenet</source><creator>MORROW PAUL J ; MINOGUE PASCHAL T ; MANSSON HANS J.O ; LYDEN COLIN G ; KEANE MIKE D ; ADAMS ROBERT W ; DEL MAR CHAMARRO MARTI MARIA ; O'BRIEN RICHARD T</creator><creatorcontrib>MORROW PAUL J ; MINOGUE PASCHAL T ; MANSSON HANS J.O ; LYDEN COLIN G ; KEANE MIKE D ; ADAMS ROBERT W ; DEL MAR CHAMARRO MARTI MARIA ; O'BRIEN RICHARD T</creatorcontrib><description>A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from a flash ADC. An integrator has a differential input that integrates the difference of the generated current by the multi-bit IDAC and the input signal current on a continuous-time basis. The input stage further comprises a first biasing current source and a second biasing current source which bias the input stage in a mid-scale condition. A first summing node connects to the first differential input line, a first differential input of the integrator and the first output branch. A second summing node connects to the second differential input line, a second differential input of the integrator and the second output branch. A set of chopping switches alternately connect the biasing current sources to the summing nodes in a first configuration and a second, reversed, configuration. The converter receives a modulator clock signal at a frequency FS and the chopping switches can operate at FS or a binary subdivision thereof. The integrator amplifier can also be chopper-stabilized.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; CODE CONVERSION IN GENERAL ; CODING ; DECODING ; ELECTRICITY</subject><creationdate>2006</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20060629&DB=EPODOC&CC=US&NR=2006139192A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20060629&DB=EPODOC&CC=US&NR=2006139192A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MORROW PAUL J</creatorcontrib><creatorcontrib>MINOGUE PASCHAL T</creatorcontrib><creatorcontrib>MANSSON HANS J.O</creatorcontrib><creatorcontrib>LYDEN COLIN G</creatorcontrib><creatorcontrib>KEANE MIKE D</creatorcontrib><creatorcontrib>ADAMS ROBERT W</creatorcontrib><creatorcontrib>DEL MAR CHAMARRO MARTI MARIA</creatorcontrib><creatorcontrib>O'BRIEN RICHARD T</creatorcontrib><title>Differential front-end continuous-time sigma-delta ADC using chopper stabilisation</title><description>A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from a flash ADC. An integrator has a differential input that integrates the difference of the generated current by the multi-bit IDAC and the input signal current on a continuous-time basis. The input stage further comprises a first biasing current source and a second biasing current source which bias the input stage in a mid-scale condition. A first summing node connects to the first differential input line, a first differential input of the integrator and the first output branch. A second summing node connects to the second differential input line, a second differential input of the integrator and the second output branch. A set of chopping switches alternately connect the biasing current sources to the summing nodes in a first configuration and a second, reversed, configuration. The converter receives a modulator clock signal at a frequency FS and the chopping switches can operate at FS or a binary subdivision thereof. The integrator amplifier can also be chopper-stabilized.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>CODE CONVERSION IN GENERAL</subject><subject>CODING</subject><subject>DECODING</subject><subject>ELECTRICITY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2006</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrsKwkAQQNE0FqL-w4D1Qh4gpAyJYu2jDmMyGwc2s0tm8v9a-AFW9xR3m9069p4WEmMM4Jco5khGGL5gWeOqzngmUJ5mdCMFQ2i6FlZlmWB4x5RoATV8cWBF4yj7bOMxKB1-3WXHy_nRXh2l2JMmHEjI-ue9zPNTUdVFXTZF9d_1ARUbOTk</recordid><startdate>20060629</startdate><enddate>20060629</enddate><creator>MORROW PAUL J</creator><creator>MINOGUE PASCHAL T</creator><creator>MANSSON HANS J.O</creator><creator>LYDEN COLIN G</creator><creator>KEANE MIKE D</creator><creator>ADAMS ROBERT W</creator><creator>DEL MAR CHAMARRO MARTI MARIA</creator><creator>O'BRIEN RICHARD T</creator><scope>EVB</scope></search><sort><creationdate>20060629</creationdate><title>Differential front-end continuous-time sigma-delta ADC using chopper stabilisation</title><author>MORROW PAUL J ; MINOGUE PASCHAL T ; MANSSON HANS J.O ; LYDEN COLIN G ; KEANE MIKE D ; ADAMS ROBERT W ; DEL MAR CHAMARRO MARTI MARIA ; O'BRIEN RICHARD T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2006139192A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2006</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>CODE CONVERSION IN GENERAL</topic><topic>CODING</topic><topic>DECODING</topic><topic>ELECTRICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>MORROW PAUL J</creatorcontrib><creatorcontrib>MINOGUE PASCHAL T</creatorcontrib><creatorcontrib>MANSSON HANS J.O</creatorcontrib><creatorcontrib>LYDEN COLIN G</creatorcontrib><creatorcontrib>KEANE MIKE D</creatorcontrib><creatorcontrib>ADAMS ROBERT W</creatorcontrib><creatorcontrib>DEL MAR CHAMARRO MARTI MARIA</creatorcontrib><creatorcontrib>O'BRIEN RICHARD T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MORROW PAUL J</au><au>MINOGUE PASCHAL T</au><au>MANSSON HANS J.O</au><au>LYDEN COLIN G</au><au>KEANE MIKE D</au><au>ADAMS ROBERT W</au><au>DEL MAR CHAMARRO MARTI MARIA</au><au>O'BRIEN RICHARD T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Differential front-end continuous-time sigma-delta ADC using chopper stabilisation</title><date>2006-06-29</date><risdate>2006</risdate><abstract>A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from a flash ADC. An integrator has a differential input that integrates the difference of the generated current by the multi-bit IDAC and the input signal current on a continuous-time basis. The input stage further comprises a first biasing current source and a second biasing current source which bias the input stage in a mid-scale condition. A first summing node connects to the first differential input line, a first differential input of the integrator and the first output branch. A second summing node connects to the second differential input line, a second differential input of the integrator and the second output branch. A set of chopping switches alternately connect the biasing current sources to the summing nodes in a first configuration and a second, reversed, configuration. The converter receives a modulator clock signal at a frequency FS and the chopping switches can operate at FS or a binary subdivision thereof. The integrator amplifier can also be chopper-stabilized.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2006139192A1 |
source | esp@cenet |
subjects | BASIC ELECTRONIC CIRCUITRY CODE CONVERSION IN GENERAL CODING DECODING ELECTRICITY |
title | Differential front-end continuous-time sigma-delta ADC using chopper stabilisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MORROW%20PAUL%20J&rft.date=2006-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2006139192A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |