Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models
A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WREN CHRISTOPHER R MINNEN DAVID C |
description | A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2005256817A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2005256817A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2005256817A13</originalsourceid><addsrcrecordid>eNqNizsOwjAQRNNQIOAOK1EjJUF8WsRHNFRAHS32hFg4a2MbJG6PCw5ANaN584aF3SEh9EaM3Cmh9y6wJc8prxLJCEVIhCbNiXN_viAKkW4f6gwCB9UZlQ0N5bIcTTJOyLWZag2hE4eHe1PvNGwcF4OWbcTkl6NiethftscZvGsQPSsIUnM912W5qBfLdbXaVPP_Xl-TrENl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><source>esp@cenet</source><creator>WREN CHRISTOPHER R ; MINNEN DAVID C</creator><creatorcontrib>WREN CHRISTOPHER R ; MINNEN DAVID C</creatorcontrib><description>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2005</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20051117&DB=EPODOC&CC=US&NR=2005256817A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20051117&DB=EPODOC&CC=US&NR=2005256817A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WREN CHRISTOPHER R</creatorcontrib><creatorcontrib>MINNEN DAVID C</creatorcontrib><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><description>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2005</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQRNNQIOAOK1EjJUF8WsRHNFRAHS32hFg4a2MbJG6PCw5ANaN584aF3SEh9EaM3Cmh9y6wJc8prxLJCEVIhCbNiXN_viAKkW4f6gwCB9UZlQ0N5bIcTTJOyLWZag2hE4eHe1PvNGwcF4OWbcTkl6NiethftscZvGsQPSsIUnM912W5qBfLdbXaVPP_Xl-TrENl</recordid><startdate>20051117</startdate><enddate>20051117</enddate><creator>WREN CHRISTOPHER R</creator><creator>MINNEN DAVID C</creator><scope>EVB</scope></search><sort><creationdate>20051117</creationdate><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><author>WREN CHRISTOPHER R ; MINNEN DAVID C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2005256817A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WREN CHRISTOPHER R</creatorcontrib><creatorcontrib>MINNEN DAVID C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WREN CHRISTOPHER R</au><au>MINNEN DAVID C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><date>2005-11-17</date><risdate>2005</risdate><abstract>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2005256817A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WREN%20CHRISTOPHER%20R&rft.date=2005-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2005256817A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |