Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models

A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WREN CHRISTOPHER R, MINNEN DAVID C
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WREN CHRISTOPHER R
MINNEN DAVID C
description A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2005256817A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2005256817A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2005256817A13</originalsourceid><addsrcrecordid>eNqNizsOwjAQRNNQIOAOK1EjJUF8WsRHNFRAHS32hFg4a2MbJG6PCw5ANaN584aF3SEh9EaM3Cmh9y6wJc8prxLJCEVIhCbNiXN_viAKkW4f6gwCB9UZlQ0N5bIcTTJOyLWZag2hE4eHe1PvNGwcF4OWbcTkl6NiethftscZvGsQPSsIUnM912W5qBfLdbXaVPP_Xl-TrENl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><source>esp@cenet</source><creator>WREN CHRISTOPHER R ; MINNEN DAVID C</creator><creatorcontrib>WREN CHRISTOPHER R ; MINNEN DAVID C</creatorcontrib><description>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2005</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20051117&amp;DB=EPODOC&amp;CC=US&amp;NR=2005256817A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20051117&amp;DB=EPODOC&amp;CC=US&amp;NR=2005256817A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WREN CHRISTOPHER R</creatorcontrib><creatorcontrib>MINNEN DAVID C</creatorcontrib><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><description>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2005</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQRNNQIOAOK1EjJUF8WsRHNFRAHS32hFg4a2MbJG6PCw5ANaN584aF3SEh9EaM3Cmh9y6wJc8prxLJCEVIhCbNiXN_viAKkW4f6gwCB9UZlQ0N5bIcTTJOyLWZag2hE4eHe1PvNGwcF4OWbcTkl6NiethftscZvGsQPSsIUnM912W5qBfLdbXaVPP_Xl-TrENl</recordid><startdate>20051117</startdate><enddate>20051117</enddate><creator>WREN CHRISTOPHER R</creator><creator>MINNEN DAVID C</creator><scope>EVB</scope></search><sort><creationdate>20051117</creationdate><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><author>WREN CHRISTOPHER R ; MINNEN DAVID C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2005256817A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WREN CHRISTOPHER R</creatorcontrib><creatorcontrib>MINNEN DAVID C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WREN CHRISTOPHER R</au><au>MINNEN DAVID C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models</title><date>2005-11-17</date><risdate>2005</risdate><abstract>A method determines temporal patterns in data sequences. A hierarchical tree of nodes is constructed. Each node in the tree is associated with a composite hidden Markov model, in which the composite hidden Markov model has one independent path for each child node of a parent node of the hierarchical tree. The composite hidden Markov models are trained using training data sequences. The composite hidden Markov models associated with the nodes of the hierarchical tree are decomposed into a single final composite Markov model. The single final composite hidden Markov model can then be employed for determining temporal patterns in unknown data sequences.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2005256817A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Determining temporal patterns in sensed data sequences by hierarchical decomposition of hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WREN%20CHRISTOPHER%20R&rft.date=2005-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2005256817A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true