Genetically adaptive neural network classification systems and methods
Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the class...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BUTLER GARY DANA KANYUCK ROBERT WARREN COON ANDREW CHARLES STICKELS ERNEST SCOTT |
description | Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2005049983A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2005049983A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2005049983A13</originalsourceid><addsrcrecordid>eNrjZHBzT81LLclMTszJqVRITEksKMksS1XISy0tSswBUiXl-UXZCsk5icXFmWlAVSWZ-XkKxZXFJam5xQqJeSkKuaklGfkpxTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDEZZE18aLCRgYGpgYmlpYWxo6ExcaoAau01bA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Genetically adaptive neural network classification systems and methods</title><source>esp@cenet</source><creator>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</creator><creatorcontrib>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</creatorcontrib><description>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2005</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20050303&DB=EPODOC&CC=US&NR=2005049983A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20050303&DB=EPODOC&CC=US&NR=2005049983A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BUTLER GARY DANA</creatorcontrib><creatorcontrib>KANYUCK ROBERT WARREN</creatorcontrib><creatorcontrib>COON ANDREW CHARLES</creatorcontrib><creatorcontrib>STICKELS ERNEST SCOTT</creatorcontrib><title>Genetically adaptive neural network classification systems and methods</title><description>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2005</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzT81LLclMTszJqVRITEksKMksS1XISy0tSswBUiXl-UXZCsk5icXFmWlAVSWZ-XkKxZXFJam5xQqJeSkKuaklGfkpxTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDEZZE18aLCRgYGpgYmlpYWxo6ExcaoAau01bA</recordid><startdate>20050303</startdate><enddate>20050303</enddate><creator>BUTLER GARY DANA</creator><creator>KANYUCK ROBERT WARREN</creator><creator>COON ANDREW CHARLES</creator><creator>STICKELS ERNEST SCOTT</creator><scope>EVB</scope></search><sort><creationdate>20050303</creationdate><title>Genetically adaptive neural network classification systems and methods</title><author>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2005049983A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>BUTLER GARY DANA</creatorcontrib><creatorcontrib>KANYUCK ROBERT WARREN</creatorcontrib><creatorcontrib>COON ANDREW CHARLES</creatorcontrib><creatorcontrib>STICKELS ERNEST SCOTT</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BUTLER GARY DANA</au><au>KANYUCK ROBERT WARREN</au><au>COON ANDREW CHARLES</au><au>STICKELS ERNEST SCOTT</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Genetically adaptive neural network classification systems and methods</title><date>2005-03-03</date><risdate>2005</risdate><abstract>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2005049983A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Genetically adaptive neural network classification systems and methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BUTLER%20GARY%20DANA&rft.date=2005-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2005049983A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |