Genetically adaptive neural network classification systems and methods

Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BUTLER GARY DANA, KANYUCK ROBERT WARREN, COON ANDREW CHARLES, STICKELS ERNEST SCOTT
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BUTLER GARY DANA
KANYUCK ROBERT WARREN
COON ANDREW CHARLES
STICKELS ERNEST SCOTT
description Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2005049983A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2005049983A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2005049983A13</originalsourceid><addsrcrecordid>eNrjZHBzT81LLclMTszJqVRITEksKMksS1XISy0tSswBUiXl-UXZCsk5icXFmWlAVSWZ-XkKxZXFJam5xQqJeSkKuaklGfkpxTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDEZZE18aLCRgYGpgYmlpYWxo6ExcaoAau01bA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Genetically adaptive neural network classification systems and methods</title><source>esp@cenet</source><creator>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</creator><creatorcontrib>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</creatorcontrib><description>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2005</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20050303&amp;DB=EPODOC&amp;CC=US&amp;NR=2005049983A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20050303&amp;DB=EPODOC&amp;CC=US&amp;NR=2005049983A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BUTLER GARY DANA</creatorcontrib><creatorcontrib>KANYUCK ROBERT WARREN</creatorcontrib><creatorcontrib>COON ANDREW CHARLES</creatorcontrib><creatorcontrib>STICKELS ERNEST SCOTT</creatorcontrib><title>Genetically adaptive neural network classification systems and methods</title><description>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2005</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzT81LLclMTszJqVRITEksKMksS1XISy0tSswBUiXl-UXZCsk5icXFmWlAVSWZ-XkKxZXFJam5xQqJeSkKuaklGfkpxTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDEZZE18aLCRgYGpgYmlpYWxo6ExcaoAau01bA</recordid><startdate>20050303</startdate><enddate>20050303</enddate><creator>BUTLER GARY DANA</creator><creator>KANYUCK ROBERT WARREN</creator><creator>COON ANDREW CHARLES</creator><creator>STICKELS ERNEST SCOTT</creator><scope>EVB</scope></search><sort><creationdate>20050303</creationdate><title>Genetically adaptive neural network classification systems and methods</title><author>BUTLER GARY DANA ; KANYUCK ROBERT WARREN ; COON ANDREW CHARLES ; STICKELS ERNEST SCOTT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2005049983A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>BUTLER GARY DANA</creatorcontrib><creatorcontrib>KANYUCK ROBERT WARREN</creatorcontrib><creatorcontrib>COON ANDREW CHARLES</creatorcontrib><creatorcontrib>STICKELS ERNEST SCOTT</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BUTLER GARY DANA</au><au>KANYUCK ROBERT WARREN</au><au>COON ANDREW CHARLES</au><au>STICKELS ERNEST SCOTT</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Genetically adaptive neural network classification systems and methods</title><date>2005-03-03</date><risdate>2005</risdate><abstract>Genetically adaptive neural network systems and methods provide environmentally adaptable classification algorithms for use, among other things, in multi-static active sonar classification. Classification training occurs in-situ with data acquired at the onset of data collection to improve the classification of sonar energy detections in difficult littoral environments. Accordingly, in-situ training sets are developed while the training process is supervised and refined. Candidate weights vectors evolve through genetic-based search procedures, and the fitness of candidate weight vectors is evaluated. Feature vectors of interest may be classified using multiple neural networks and statistical averaging techniques to provide accurate and reliable signal classification.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2005049983A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Genetically adaptive neural network classification systems and methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BUTLER%20GARY%20DANA&rft.date=2005-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2005049983A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true