Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems

Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BOTROS SHERIF M, IZENSON MARTIN D, DIEP THANH A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BOTROS SHERIF M
IZENSON MARTIN D
DIEP THANH A
description Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2004225627A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2004225627A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2004225627A13</originalsourceid><addsrcrecordid>eNqNjL0KAjEQhK-xEPUdFqyFM_7VIor9aS1LboPBS_bIbpArfHdz4ANYzfAx30yrTzNEfZJ4AXaAkQN2nAVaVARlsIlQCTCpd9567MAVkBOBkEoRWshCoysYCHwEy6HPSgki6ZvTqzBNWTxHaEnJ6thkEKUg82risBNa_HJWLS_n2-m6op4fJD1aKi-Pe2PqemvMbm8Ox_Xmv9UXsiZJww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems</title><source>esp@cenet</source><creator>BOTROS SHERIF M ; IZENSON MARTIN D ; DIEP THANH A</creator><creatorcontrib>BOTROS SHERIF M ; IZENSON MARTIN D ; DIEP THANH A</creatorcontrib><description>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2004</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20041111&amp;DB=EPODOC&amp;CC=US&amp;NR=2004225627A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20041111&amp;DB=EPODOC&amp;CC=US&amp;NR=2004225627A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BOTROS SHERIF M</creatorcontrib><creatorcontrib>IZENSON MARTIN D</creatorcontrib><creatorcontrib>DIEP THANH A</creatorcontrib><title>Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems</title><description>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2004</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KAjEQhK-xEPUdFqyFM_7VIor9aS1LboPBS_bIbpArfHdz4ANYzfAx30yrTzNEfZJ4AXaAkQN2nAVaVARlsIlQCTCpd9567MAVkBOBkEoRWshCoysYCHwEy6HPSgki6ZvTqzBNWTxHaEnJ6thkEKUg82risBNa_HJWLS_n2-m6op4fJD1aKi-Pe2PqemvMbm8Ox_Xmv9UXsiZJww</recordid><startdate>20041111</startdate><enddate>20041111</enddate><creator>BOTROS SHERIF M</creator><creator>IZENSON MARTIN D</creator><creator>DIEP THANH A</creator><scope>EVB</scope></search><sort><creationdate>20041111</creationdate><title>Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems</title><author>BOTROS SHERIF M ; IZENSON MARTIN D ; DIEP THANH A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2004225627A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2004</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>BOTROS SHERIF M</creatorcontrib><creatorcontrib>IZENSON MARTIN D</creatorcontrib><creatorcontrib>DIEP THANH A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BOTROS SHERIF M</au><au>IZENSON MARTIN D</au><au>DIEP THANH A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems</title><date>2004-11-11</date><risdate>2004</risdate><abstract>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2004225627A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Synthesis of anomalous data to create artificial feature sets and use of same in computer network intrusion detection systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BOTROS%20SHERIF%20M&rft.date=2004-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2004225627A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true