Cross-validation for naive bayes data mining model

A system, method, and computer program product provides a useful measure of the accuracy of a Naïve Bayes predictive model and reduced computational expense relative to conventional techniques. A method for measuring accuracy of a Naive Bayes predictive model comprises the steps of receiving a train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KUNTALA PAVANI, DRESCHER GARY L
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KUNTALA PAVANI
DRESCHER GARY L
description A system, method, and computer program product provides a useful measure of the accuracy of a Naïve Bayes predictive model and reduced computational expense relative to conventional techniques. A method for measuring accuracy of a Naive Bayes predictive model comprises the steps of receiving a training dataset comprising a plurality of rows of data, building a Naïve Bayes predictive model using the training dataset, for each of at least a portion of the plurality of rows of data in the training dataset incrementally untraining the Naïve Bayes predictive model using the row of data and determining an accuracy of the incrementally untrained Naïve Bayes predictive model, and determining an aggregate accuracy of the Naïve Bayes predictive model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2003212851A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2003212851A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2003212851A13</originalsourceid><addsrcrecordid>eNrjZDByLsovLtYtS8zJTEksyczPU0jLL1LIS8wsS1VISqxMLVYACicq5GbmZealK-Tmp6Tm8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMDYyNDIwtTQ0dDY-JUAQBlESy6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-validation for naive bayes data mining model</title><source>esp@cenet</source><creator>KUNTALA PAVANI ; DRESCHER GARY L</creator><creatorcontrib>KUNTALA PAVANI ; DRESCHER GARY L</creatorcontrib><description>A system, method, and computer program product provides a useful measure of the accuracy of a Naïve Bayes predictive model and reduced computational expense relative to conventional techniques. A method for measuring accuracy of a Naive Bayes predictive model comprises the steps of receiving a training dataset comprising a plurality of rows of data, building a Naïve Bayes predictive model using the training dataset, for each of at least a portion of the plurality of rows of data in the training dataset incrementally untraining the Naïve Bayes predictive model using the row of data and determining an accuracy of the incrementally untrained Naïve Bayes predictive model, and determining an aggregate accuracy of the Naïve Bayes predictive model.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20031113&amp;DB=EPODOC&amp;CC=US&amp;NR=2003212851A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20031113&amp;DB=EPODOC&amp;CC=US&amp;NR=2003212851A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUNTALA PAVANI</creatorcontrib><creatorcontrib>DRESCHER GARY L</creatorcontrib><title>Cross-validation for naive bayes data mining model</title><description>A system, method, and computer program product provides a useful measure of the accuracy of a Naïve Bayes predictive model and reduced computational expense relative to conventional techniques. A method for measuring accuracy of a Naive Bayes predictive model comprises the steps of receiving a training dataset comprising a plurality of rows of data, building a Naïve Bayes predictive model using the training dataset, for each of at least a portion of the plurality of rows of data in the training dataset incrementally untraining the Naïve Bayes predictive model using the row of data and determining an accuracy of the incrementally untrained Naïve Bayes predictive model, and determining an aggregate accuracy of the Naïve Bayes predictive model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDByLsovLtYtS8zJTEksyczPU0jLL1LIS8wsS1VISqxMLVYACicq5GbmZealK-Tmp6Tm8DCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMDYyNDIwtTQ0dDY-JUAQBlESy6</recordid><startdate>20031113</startdate><enddate>20031113</enddate><creator>KUNTALA PAVANI</creator><creator>DRESCHER GARY L</creator><scope>EVB</scope></search><sort><creationdate>20031113</creationdate><title>Cross-validation for naive bayes data mining model</title><author>KUNTALA PAVANI ; DRESCHER GARY L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2003212851A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2003</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KUNTALA PAVANI</creatorcontrib><creatorcontrib>DRESCHER GARY L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUNTALA PAVANI</au><au>DRESCHER GARY L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-validation for naive bayes data mining model</title><date>2003-11-13</date><risdate>2003</risdate><abstract>A system, method, and computer program product provides a useful measure of the accuracy of a Naïve Bayes predictive model and reduced computational expense relative to conventional techniques. A method for measuring accuracy of a Naive Bayes predictive model comprises the steps of receiving a training dataset comprising a plurality of rows of data, building a Naïve Bayes predictive model using the training dataset, for each of at least a portion of the plurality of rows of data in the training dataset incrementally untraining the Naïve Bayes predictive model using the row of data and determining an accuracy of the incrementally untrained Naïve Bayes predictive model, and determining an aggregate accuracy of the Naïve Bayes predictive model.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2003212851A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Cross-validation for naive bayes data mining model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUNTALA%20PAVANI&rft.date=2003-11-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2003212851A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true