Process of making a composite membrane

The present invention relates to methods of fabricating composite membranes wherein at least one of the components is initially provided in the form of a precursor. The composite material comprising the precursor is processed to transform the precursor and obtain a membrane having a desired property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: CISAR ALAN J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CISAR ALAN J
description The present invention relates to methods of fabricating composite membranes wherein at least one of the components is initially provided in the form of a precursor. The composite material comprising the precursor is processed to transform the precursor and obtain a membrane having a desired property. Including a thermoplastic precursor to a desired component, which itself is less thermoplastic, permits separate pieces of the membrane to be joined by welding or other thermal processes relying on the meltability of the components to achieve a bond. The invention also encompasses fabricating a reinforced ion conducting membrane by melting and mixing a non ion-conducting precursor to an ion-conducting polymer with an essentially inert polymer. The composite material is then processed to transform the non ion-conducting polymer into the ion-conducting form. The mixing of the precursor and the inert polymer may also be achieved by co-precipitating a solution of the precursor and a suspension of the inert polymer; impregnating the precursor onto the walls of the pores of a porous, essentially inert polymer; filling the pores of a porous, essentially inert polymer with a solution of comprising a non ion-conducting precursor to an ion conducting precursor and evacuating the solvent to substantially fill the pores of a the porous, essentially inert polymer with the precursor; or melting the precursor, filling the pores of a porous essentially inert polymer with the melted precursor and cooling the precursor to form an essentially pore free composite membrane.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2003175431A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2003175431A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2003175431A13</originalsourceid><addsrcrecordid>eNrjZFALKMpPTi0uVshPU8hNzM7MS1dIVEjOzy3IL84sSVXITc1NKkrMS-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGBsaG5qYmxoaOhsbEqQIA80MoOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Process of making a composite membrane</title><source>esp@cenet</source><creator>CISAR ALAN J</creator><creatorcontrib>CISAR ALAN J</creatorcontrib><description>The present invention relates to methods of fabricating composite membranes wherein at least one of the components is initially provided in the form of a precursor. The composite material comprising the precursor is processed to transform the precursor and obtain a membrane having a desired property. Including a thermoplastic precursor to a desired component, which itself is less thermoplastic, permits separate pieces of the membrane to be joined by welding or other thermal processes relying on the meltability of the components to achieve a bond. The invention also encompasses fabricating a reinforced ion conducting membrane by melting and mixing a non ion-conducting precursor to an ion-conducting polymer with an essentially inert polymer. The composite material is then processed to transform the non ion-conducting polymer into the ion-conducting form. The mixing of the precursor and the inert polymer may also be achieved by co-precipitating a solution of the precursor and a suspension of the inert polymer; impregnating the precursor onto the walls of the pores of a porous, essentially inert polymer; filling the pores of a porous, essentially inert polymer with a solution of comprising a non ion-conducting precursor to an ion conducting precursor and evacuating the solvent to substantially fill the pores of a the porous, essentially inert polymer with the precursor; or melting the precursor, filling the pores of a porous essentially inert polymer with the melted precursor and cooling the precursor to form an essentially pore free composite membrane.</description><edition>7</edition><language>eng</language><subject>AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F,C08G ; BASIC ELECTRIC ELEMENTS ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; COMPOSITIONS BASED THEREON ; ELECTRICITY ; GENERAL PROCESSES OF COMPOUNDING ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; METALLURGY ; ORGANIC MACROMOLECULAR COMPOUNDS ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; THEIR PREPARATION OR CHEMICAL WORKING-UP ; WORKING-UP</subject><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030918&amp;DB=EPODOC&amp;CC=US&amp;NR=2003175431A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030918&amp;DB=EPODOC&amp;CC=US&amp;NR=2003175431A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CISAR ALAN J</creatorcontrib><title>Process of making a composite membrane</title><description>The present invention relates to methods of fabricating composite membranes wherein at least one of the components is initially provided in the form of a precursor. The composite material comprising the precursor is processed to transform the precursor and obtain a membrane having a desired property. Including a thermoplastic precursor to a desired component, which itself is less thermoplastic, permits separate pieces of the membrane to be joined by welding or other thermal processes relying on the meltability of the components to achieve a bond. The invention also encompasses fabricating a reinforced ion conducting membrane by melting and mixing a non ion-conducting precursor to an ion-conducting polymer with an essentially inert polymer. The composite material is then processed to transform the non ion-conducting polymer into the ion-conducting form. The mixing of the precursor and the inert polymer may also be achieved by co-precipitating a solution of the precursor and a suspension of the inert polymer; impregnating the precursor onto the walls of the pores of a porous, essentially inert polymer; filling the pores of a porous, essentially inert polymer with a solution of comprising a non ion-conducting precursor to an ion conducting precursor and evacuating the solvent to substantially fill the pores of a the porous, essentially inert polymer with the precursor; or melting the precursor, filling the pores of a porous essentially inert polymer with the melted precursor and cooling the precursor to form an essentially pore free composite membrane.</description><subject>AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F,C08G</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>COMPOSITIONS BASED THEREON</subject><subject>ELECTRICITY</subject><subject>GENERAL PROCESSES OF COMPOUNDING</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>METALLURGY</subject><subject>ORGANIC MACROMOLECULAR COMPOUNDS</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>THEIR PREPARATION OR CHEMICAL WORKING-UP</subject><subject>WORKING-UP</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFALKMpPTi0uVshPU8hNzM7MS1dIVEjOzy3IL84sSVXITc1NKkrMS-VhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGBsaG5qYmxoaOhsbEqQIA80MoOw</recordid><startdate>20030918</startdate><enddate>20030918</enddate><creator>CISAR ALAN J</creator><scope>EVB</scope></search><sort><creationdate>20030918</creationdate><title>Process of making a composite membrane</title><author>CISAR ALAN J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2003175431A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2003</creationdate><topic>AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F,C08G</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>COMPOSITIONS BASED THEREON</topic><topic>ELECTRICITY</topic><topic>GENERAL PROCESSES OF COMPOUNDING</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>METALLURGY</topic><topic>ORGANIC MACROMOLECULAR COMPOUNDS</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>THEIR PREPARATION OR CHEMICAL WORKING-UP</topic><topic>WORKING-UP</topic><toplevel>online_resources</toplevel><creatorcontrib>CISAR ALAN J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CISAR ALAN J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Process of making a composite membrane</title><date>2003-09-18</date><risdate>2003</risdate><abstract>The present invention relates to methods of fabricating composite membranes wherein at least one of the components is initially provided in the form of a precursor. The composite material comprising the precursor is processed to transform the precursor and obtain a membrane having a desired property. Including a thermoplastic precursor to a desired component, which itself is less thermoplastic, permits separate pieces of the membrane to be joined by welding or other thermal processes relying on the meltability of the components to achieve a bond. The invention also encompasses fabricating a reinforced ion conducting membrane by melting and mixing a non ion-conducting precursor to an ion-conducting polymer with an essentially inert polymer. The composite material is then processed to transform the non ion-conducting polymer into the ion-conducting form. The mixing of the precursor and the inert polymer may also be achieved by co-precipitating a solution of the precursor and a suspension of the inert polymer; impregnating the precursor onto the walls of the pores of a porous, essentially inert polymer; filling the pores of a porous, essentially inert polymer with a solution of comprising a non ion-conducting precursor to an ion conducting precursor and evacuating the solvent to substantially fill the pores of a the porous, essentially inert polymer with the precursor; or melting the precursor, filling the pores of a porous essentially inert polymer with the melted precursor and cooling the precursor to form an essentially pore free composite membrane.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2003175431A1
source esp@cenet
subjects AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F,C08G
BASIC ELECTRIC ELEMENTS
CHEMISTRY
CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS
COMPOSITIONS BASED THEREON
ELECTRICITY
GENERAL PROCESSES OF COMPOUNDING
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
METALLURGY
ORGANIC MACROMOLECULAR COMPOUNDS
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY
TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
TECHNICAL SUBJECTS COVERED BY FORMER USPC
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE
THEIR PREPARATION OR CHEMICAL WORKING-UP
WORKING-UP
title Process of making a composite membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CISAR%20ALAN%20J&rft.date=2003-09-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2003175431A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true