Exhaust gas housing of a thermal engine

In an exhaust gas housing (1) of a thermal engine, a radially outer housing casing (9) and a radially inner housing casing (10) arranged on the hub side are connected to one another via at least one thermally insulated carrying rib (3) acted upon by a cooling medium. A carrying rib (3) has at least...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAXTER ANDREW, NAVROTSKY VLADIMIR, MIHELIC MIRJANA, ROTHBRUST MATTHIAS
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BAXTER ANDREW
NAVROTSKY VLADIMIR
MIHELIC MIRJANA
ROTHBRUST MATTHIAS
description In an exhaust gas housing (1) of a thermal engine, a radially outer housing casing (9) and a radially inner housing casing (10) arranged on the hub side are connected to one another via at least one thermally insulated carrying rib (3) acted upon by a cooling medium. A carrying rib (3) has at least two passage ducts (7) and (8) for the cooling medium, at least one passage duct (7) possessing a cooling medium supply (6) and at least one passage duct (8) possessing a cooling medium outlet (12), and these passage ducts (7) and (8) being in communicating connection in the radially inner hub-side end region via a deflection duct (11). The cooling medium is led from an external pressure source (5) through the carrying rib (3) to the region of the deflecting duct (11) arranged on the hub-side casing (10) and from there through the carrying rib (3) back again into a collecting duct (15) which issues preferably into an annular duct (26) for cooling the exhaust gas housing flange (24).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2003150205A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2003150205A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2003150205A13</originalsourceid><addsrcrecordid>eNrjZFB3rchILC0uUUhPLFbIyC8tzsxLV8hPU0hUKMlILcpNzFFIzUvPzEvlYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBgbGhqYGRgamjobGxKkCABFAKFk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Exhaust gas housing of a thermal engine</title><source>esp@cenet</source><creator>BAXTER ANDREW ; NAVROTSKY VLADIMIR ; MIHELIC MIRJANA ; ROTHBRUST MATTHIAS</creator><creatorcontrib>BAXTER ANDREW ; NAVROTSKY VLADIMIR ; MIHELIC MIRJANA ; ROTHBRUST MATTHIAS</creatorcontrib><description>In an exhaust gas housing (1) of a thermal engine, a radially outer housing casing (9) and a radially inner housing casing (10) arranged on the hub side are connected to one another via at least one thermally insulated carrying rib (3) acted upon by a cooling medium. A carrying rib (3) has at least two passage ducts (7) and (8) for the cooling medium, at least one passage duct (7) possessing a cooling medium supply (6) and at least one passage duct (8) possessing a cooling medium outlet (12), and these passage ducts (7) and (8) being in communicating connection in the radially inner hub-side end region via a deflection duct (11). The cooling medium is led from an external pressure source (5) through the carrying rib (3) to the region of the deflecting duct (11) arranged on the hub-side casing (10) and from there through the carrying rib (3) back again into a collecting duct (15) which issues preferably into an annular duct (26) for cooling the exhaust gas housing flange (24).</description><edition>7</edition><language>eng</language><subject>AIR INTAKES FOR JET-PROPULSION PLANTS ; BLASTING ; COMBUSTION ENGINES ; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS ; ENGINE PLANTS IN GENERAL ; GAS-TURBINE PLANTS ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030814&amp;DB=EPODOC&amp;CC=US&amp;NR=2003150205A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030814&amp;DB=EPODOC&amp;CC=US&amp;NR=2003150205A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BAXTER ANDREW</creatorcontrib><creatorcontrib>NAVROTSKY VLADIMIR</creatorcontrib><creatorcontrib>MIHELIC MIRJANA</creatorcontrib><creatorcontrib>ROTHBRUST MATTHIAS</creatorcontrib><title>Exhaust gas housing of a thermal engine</title><description>In an exhaust gas housing (1) of a thermal engine, a radially outer housing casing (9) and a radially inner housing casing (10) arranged on the hub side are connected to one another via at least one thermally insulated carrying rib (3) acted upon by a cooling medium. A carrying rib (3) has at least two passage ducts (7) and (8) for the cooling medium, at least one passage duct (7) possessing a cooling medium supply (6) and at least one passage duct (8) possessing a cooling medium outlet (12), and these passage ducts (7) and (8) being in communicating connection in the radially inner hub-side end region via a deflection duct (11). The cooling medium is led from an external pressure source (5) through the carrying rib (3) to the region of the deflecting duct (11) arranged on the hub-side casing (10) and from there through the carrying rib (3) back again into a collecting duct (15) which issues preferably into an annular duct (26) for cooling the exhaust gas housing flange (24).</description><subject>AIR INTAKES FOR JET-PROPULSION PLANTS</subject><subject>BLASTING</subject><subject>COMBUSTION ENGINES</subject><subject>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>GAS-TURBINE PLANTS</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3rchILC0uUUhPLFbIyC8tzsxLV8hPU0hUKMlILcpNzFFIzUvPzEvlYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBgbGhqYGRgamjobGxKkCABFAKFk</recordid><startdate>20030814</startdate><enddate>20030814</enddate><creator>BAXTER ANDREW</creator><creator>NAVROTSKY VLADIMIR</creator><creator>MIHELIC MIRJANA</creator><creator>ROTHBRUST MATTHIAS</creator><scope>EVB</scope></search><sort><creationdate>20030814</creationdate><title>Exhaust gas housing of a thermal engine</title><author>BAXTER ANDREW ; NAVROTSKY VLADIMIR ; MIHELIC MIRJANA ; ROTHBRUST MATTHIAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2003150205A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2003</creationdate><topic>AIR INTAKES FOR JET-PROPULSION PLANTS</topic><topic>BLASTING</topic><topic>COMBUSTION ENGINES</topic><topic>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>GAS-TURBINE PLANTS</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>BAXTER ANDREW</creatorcontrib><creatorcontrib>NAVROTSKY VLADIMIR</creatorcontrib><creatorcontrib>MIHELIC MIRJANA</creatorcontrib><creatorcontrib>ROTHBRUST MATTHIAS</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BAXTER ANDREW</au><au>NAVROTSKY VLADIMIR</au><au>MIHELIC MIRJANA</au><au>ROTHBRUST MATTHIAS</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Exhaust gas housing of a thermal engine</title><date>2003-08-14</date><risdate>2003</risdate><abstract>In an exhaust gas housing (1) of a thermal engine, a radially outer housing casing (9) and a radially inner housing casing (10) arranged on the hub side are connected to one another via at least one thermally insulated carrying rib (3) acted upon by a cooling medium. A carrying rib (3) has at least two passage ducts (7) and (8) for the cooling medium, at least one passage duct (7) possessing a cooling medium supply (6) and at least one passage duct (8) possessing a cooling medium outlet (12), and these passage ducts (7) and (8) being in communicating connection in the radially inner hub-side end region via a deflection duct (11). The cooling medium is led from an external pressure source (5) through the carrying rib (3) to the region of the deflecting duct (11) arranged on the hub-side casing (10) and from there through the carrying rib (3) back again into a collecting duct (15) which issues preferably into an annular duct (26) for cooling the exhaust gas housing flange (24).</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2003150205A1
source esp@cenet
subjects AIR INTAKES FOR JET-PROPULSION PLANTS
BLASTING
COMBUSTION ENGINES
CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
ENGINE PLANTS IN GENERAL
GAS-TURBINE PLANTS
HEATING
HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
LIGHTING
MACHINES OR ENGINES IN GENERAL
MECHANICAL ENGINEERING
NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES
STEAM ENGINES
WEAPONS
title Exhaust gas housing of a thermal engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BAXTER%20ANDREW&rft.date=2003-08-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2003150205A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true