SAFE ARSENIC GAS PHASE DOPING
A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | OOSTERLAKEN THEODORUS GERARDUS MARIA BEULENS JACOBUS JOHANNES |
description | A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor structure. The sealant layer inhibits outdiffusion of arsenic when the substrate is unloaded from the reaction chamber, enabling safe unloading at relatively high temperatures. In the illustrated embodiments, the sealant layer can be formed by oxidation, nitridation or chemical vapor deposition. Forming the sealant layer can be conducted prior to, during or after cooling the substrate to an unloading temperature. Preferably, a gettering step is conducted after gas phase doping and prior to forming the sealant layer, such as by exposing the substrate to HCl vapor. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2002090802A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2002090802A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2002090802A13</originalsourceid><addsrcrecordid>eNrjZJANdnRzVXAMCnb183RWcHcMVgjwcAx2VXDxD_D0c-dhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGBkYGlgYWBkaOhsbEqQIA7wUhlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SAFE ARSENIC GAS PHASE DOPING</title><source>esp@cenet</source><creator>OOSTERLAKEN THEODORUS GERARDUS MARIA ; BEULENS JACOBUS JOHANNES</creator><creatorcontrib>OOSTERLAKEN THEODORUS GERARDUS MARIA ; BEULENS JACOBUS JOHANNES</creatorcontrib><description>A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor structure. The sealant layer inhibits outdiffusion of arsenic when the substrate is unloaded from the reaction chamber, enabling safe unloading at relatively high temperatures. In the illustrated embodiments, the sealant layer can be formed by oxidation, nitridation or chemical vapor deposition. Forming the sealant layer can be conducted prior to, during or after cooling the substrate to an unloading temperature. Preferably, a gettering step is conducted after gas phase doping and prior to forming the sealant layer, such as by exposing the substrate to HCl vapor.</description><edition>7</edition><language>eng</language><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE ; APPARATUS THEREFOR ; BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; CRYSTAL GROWTH ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; REFINING BY ZONE-MELTING OF MATERIAL ; SEMICONDUCTOR DEVICES ; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; SINGLE-CRYSTAL-GROWTH ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20020711&DB=EPODOC&CC=US&NR=2002090802A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20020711&DB=EPODOC&CC=US&NR=2002090802A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>OOSTERLAKEN THEODORUS GERARDUS MARIA</creatorcontrib><creatorcontrib>BEULENS JACOBUS JOHANNES</creatorcontrib><title>SAFE ARSENIC GAS PHASE DOPING</title><description>A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor structure. The sealant layer inhibits outdiffusion of arsenic when the substrate is unloaded from the reaction chamber, enabling safe unloading at relatively high temperatures. In the illustrated embodiments, the sealant layer can be formed by oxidation, nitridation or chemical vapor deposition. Forming the sealant layer can be conducted prior to, during or after cooling the substrate to an unloading temperature. Preferably, a gettering step is conducted after gas phase doping and prior to forming the sealant layer, such as by exposing the substrate to HCl vapor.</description><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</subject><subject>APPARATUS THEREFOR</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>CRYSTAL GROWTH</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>REFINING BY ZONE-MELTING OF MATERIAL</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>SINGLE-CRYSTAL-GROWTH</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJANdnRzVXAMCnb183RWcHcMVgjwcAx2VXDxD_D0c-dhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGBkYGlgYWBkaOhsbEqQIA7wUhlw</recordid><startdate>20020711</startdate><enddate>20020711</enddate><creator>OOSTERLAKEN THEODORUS GERARDUS MARIA</creator><creator>BEULENS JACOBUS JOHANNES</creator><scope>EVB</scope></search><sort><creationdate>20020711</creationdate><title>SAFE ARSENIC GAS PHASE DOPING</title><author>OOSTERLAKEN THEODORUS GERARDUS MARIA ; BEULENS JACOBUS JOHANNES</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2002090802A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2002</creationdate><topic>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</topic><topic>APPARATUS THEREFOR</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>CRYSTAL GROWTH</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>REFINING BY ZONE-MELTING OF MATERIAL</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>SINGLE-CRYSTAL-GROWTH</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</topic><toplevel>online_resources</toplevel><creatorcontrib>OOSTERLAKEN THEODORUS GERARDUS MARIA</creatorcontrib><creatorcontrib>BEULENS JACOBUS JOHANNES</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OOSTERLAKEN THEODORUS GERARDUS MARIA</au><au>BEULENS JACOBUS JOHANNES</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SAFE ARSENIC GAS PHASE DOPING</title><date>2002-07-11</date><risdate>2002</risdate><abstract>A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor structure. The sealant layer inhibits outdiffusion of arsenic when the substrate is unloaded from the reaction chamber, enabling safe unloading at relatively high temperatures. In the illustrated embodiments, the sealant layer can be formed by oxidation, nitridation or chemical vapor deposition. Forming the sealant layer can be conducted prior to, during or after cooling the substrate to an unloading temperature. Preferably, a gettering step is conducted after gas phase doping and prior to forming the sealant layer, such as by exposing the substrate to HCl vapor.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2002090802A1 |
source | esp@cenet |
subjects | AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE APPARATUS THEREFOR BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL CRYSTAL GROWTH DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE REFINING BY ZONE-MELTING OF MATERIAL SEMICONDUCTOR DEVICES SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE SINGLE-CRYSTAL-GROWTH SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL |
title | SAFE ARSENIC GAS PHASE DOPING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=OOSTERLAKEN%20THEODORUS%20GERARDUS%20MARIA&rft.date=2002-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2002090802A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |