IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER
A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first ox...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHARNESKI LAWRENCE J NGUYEN TUE |
description | A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2001009154A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2001009154A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2001009154A13</originalsourceid><addsrcrecordid>eNrjZPDx9NMN9gwJVfB1DfHwd1Hwd1Nw9nF19PP0c1dwBAk6-uj6B7kDBZwVnD1cfT2dHX0UwhwD_IMUXFwD_IFaPf39gDKOvk6uQTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAwNDAwNLQ1MTR0Jg4VQA04C5l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><source>esp@cenet</source><creator>CHARNESKI LAWRENCE J ; NGUYEN TUE</creator><creatorcontrib>CHARNESKI LAWRENCE J ; NGUYEN TUE</creatorcontrib><description>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</subject><creationdate>2001</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20010726&DB=EPODOC&CC=US&NR=2001009154A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20010726&DB=EPODOC&CC=US&NR=2001009154A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHARNESKI LAWRENCE J</creatorcontrib><creatorcontrib>NGUYEN TUE</creatorcontrib><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><description>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2001</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDx9NMN9gwJVfB1DfHwd1Hwd1Nw9nF19PP0c1dwBAk6-uj6B7kDBZwVnD1cfT2dHX0UwhwD_IMUXFwD_IFaPf39gDKOvk6uQTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAwNDAwNLQ1MTR0Jg4VQA04C5l</recordid><startdate>20010726</startdate><enddate>20010726</enddate><creator>CHARNESKI LAWRENCE J</creator><creator>NGUYEN TUE</creator><scope>EVB</scope></search><sort><creationdate>20010726</creationdate><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><author>CHARNESKI LAWRENCE J ; NGUYEN TUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2001009154A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2001</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHARNESKI LAWRENCE J</creatorcontrib><creatorcontrib>NGUYEN TUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHARNESKI LAWRENCE J</au><au>NGUYEN TUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><date>2001-07-26</date><risdate>2001</risdate><abstract>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2001009154A1 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SEMICONDUCTOR DEVICES SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TECHNICAL SUBJECTS COVERED BY FORMER USPC TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS |
title | IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHARNESKI%20LAWRENCE%20J&rft.date=2001-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2001009154A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |