IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER

A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHARNESKI LAWRENCE J, NGUYEN TUE
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHARNESKI LAWRENCE J
NGUYEN TUE
description A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2001009154A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2001009154A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2001009154A13</originalsourceid><addsrcrecordid>eNrjZPDx9NMN9gwJVfB1DfHwd1Hwd1Nw9nF19PP0c1dwBAk6-uj6B7kDBZwVnD1cfT2dHX0UwhwD_IMUXFwD_IFaPf39gDKOvk6uQTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAwNDAwNLQ1MTR0Jg4VQA04C5l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><source>esp@cenet</source><creator>CHARNESKI LAWRENCE J ; NGUYEN TUE</creator><creatorcontrib>CHARNESKI LAWRENCE J ; NGUYEN TUE</creatorcontrib><description>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</subject><creationdate>2001</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20010726&amp;DB=EPODOC&amp;CC=US&amp;NR=2001009154A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20010726&amp;DB=EPODOC&amp;CC=US&amp;NR=2001009154A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHARNESKI LAWRENCE J</creatorcontrib><creatorcontrib>NGUYEN TUE</creatorcontrib><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><description>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2001</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDx9NMN9gwJVfB1DfHwd1Hwd1Nw9nF19PP0c1dwBAk6-uj6B7kDBZwVnD1cfT2dHX0UwhwD_IMUXFwD_IFaPf39gDKOvk6uQTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAwNDAwNLQ1MTR0Jg4VQA04C5l</recordid><startdate>20010726</startdate><enddate>20010726</enddate><creator>CHARNESKI LAWRENCE J</creator><creator>NGUYEN TUE</creator><scope>EVB</scope></search><sort><creationdate>20010726</creationdate><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><author>CHARNESKI LAWRENCE J ; NGUYEN TUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2001009154A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2001</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHARNESKI LAWRENCE J</creatorcontrib><creatorcontrib>NGUYEN TUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHARNESKI LAWRENCE J</au><au>NGUYEN TUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER</title><date>2001-07-26</date><risdate>2001</risdate><abstract>A method is provided to clean the interior surfaces, and especially the wafer chuck, of a metal vapor deposition chamber. The method takes advantage of the fact that the chamber controls the introduction and removal of chemical atmospheres, and the temperature inside the chamber. The method first oxidizes the surface to be cleaned with an oxygen plasma, and then removes the oxide products as a vapor with the use of Hhfac. The oxidization is controlled through the use of oxygen atmosphere, temperature, and radio frequency power levels. In this manner, the wafer chuck is cleaned of deposition byproducts without disassembly of the chamber.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2001009154A1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TECHNICAL SUBJECTS COVERED BY FORMER USPC
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ARTCOLLECTIONS [XRACs] AND DIGESTS
title IN-SITU METHOD OF CLEANING A METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CHAMBER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHARNESKI%20LAWRENCE%20J&rft.date=2001-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2001009154A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true