Content based image retrieval for lesion analysis

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Golden, Daniel Irving, Krishnan, Anitha Priya, Beckers, Fabien Rafael David, Le, Matthieu, Newton, Robert George, Didonato, Matthew Joseph, Law, Shek Bun, Lau, Hok Kan, Sall, Sean Patrick, Taerum, Torin Arni, Lieman-Sifry, Jesse, Leibowitz, Carla Rosa, Calmon, Angélique Sophie, Axerio-Cilies, John
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Golden, Daniel Irving
Krishnan, Anitha Priya
Beckers, Fabien Rafael David
Le, Matthieu
Newton, Robert George
Didonato, Matthew Joseph
Law, Shek Bun
Lau, Hok Kan
Sall, Sean Patrick
Taerum, Torin Arni
Lieman-Sifry, Jesse
Leibowitz, Carla Rosa
Calmon, Angélique Sophie
Axerio-Cilies, John
description Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12183001B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12183001B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12183001B23</originalsourceid><addsrcrecordid>eNrjZDB0zs8rSc0rUUhKLE5NUcjMTUxPVShKLSnKTC1LzFFIyy9SyEktzszPU0jMS8ypLM4s5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhkaGFsYGBoZORsbEqAEAmL8rzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content based image retrieval for lesion analysis</title><source>esp@cenet</source><creator>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</creator><creatorcontrib>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</creatorcontrib><description>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241231&amp;DB=EPODOC&amp;CC=US&amp;NR=12183001B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241231&amp;DB=EPODOC&amp;CC=US&amp;NR=12183001B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Golden, Daniel Irving</creatorcontrib><creatorcontrib>Krishnan, Anitha Priya</creatorcontrib><creatorcontrib>Beckers, Fabien Rafael David</creatorcontrib><creatorcontrib>Le, Matthieu</creatorcontrib><creatorcontrib>Newton, Robert George</creatorcontrib><creatorcontrib>Didonato, Matthew Joseph</creatorcontrib><creatorcontrib>Law, Shek Bun</creatorcontrib><creatorcontrib>Lau, Hok Kan</creatorcontrib><creatorcontrib>Sall, Sean Patrick</creatorcontrib><creatorcontrib>Taerum, Torin Arni</creatorcontrib><creatorcontrib>Lieman-Sifry, Jesse</creatorcontrib><creatorcontrib>Leibowitz, Carla Rosa</creatorcontrib><creatorcontrib>Calmon, Angélique Sophie</creatorcontrib><creatorcontrib>Axerio-Cilies, John</creatorcontrib><title>Content based image retrieval for lesion analysis</title><description>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB0zs8rSc0rUUhKLE5NUcjMTUxPVShKLSnKTC1LzFFIyy9SyEktzszPU0jMS8ypLM4s5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhkaGFsYGBoZORsbEqAEAmL8rzA</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Golden, Daniel Irving</creator><creator>Krishnan, Anitha Priya</creator><creator>Beckers, Fabien Rafael David</creator><creator>Le, Matthieu</creator><creator>Newton, Robert George</creator><creator>Didonato, Matthew Joseph</creator><creator>Law, Shek Bun</creator><creator>Lau, Hok Kan</creator><creator>Sall, Sean Patrick</creator><creator>Taerum, Torin Arni</creator><creator>Lieman-Sifry, Jesse</creator><creator>Leibowitz, Carla Rosa</creator><creator>Calmon, Angélique Sophie</creator><creator>Axerio-Cilies, John</creator><scope>EVB</scope></search><sort><creationdate>20241231</creationdate><title>Content based image retrieval for lesion analysis</title><author>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12183001B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Golden, Daniel Irving</creatorcontrib><creatorcontrib>Krishnan, Anitha Priya</creatorcontrib><creatorcontrib>Beckers, Fabien Rafael David</creatorcontrib><creatorcontrib>Le, Matthieu</creatorcontrib><creatorcontrib>Newton, Robert George</creatorcontrib><creatorcontrib>Didonato, Matthew Joseph</creatorcontrib><creatorcontrib>Law, Shek Bun</creatorcontrib><creatorcontrib>Lau, Hok Kan</creatorcontrib><creatorcontrib>Sall, Sean Patrick</creatorcontrib><creatorcontrib>Taerum, Torin Arni</creatorcontrib><creatorcontrib>Lieman-Sifry, Jesse</creatorcontrib><creatorcontrib>Leibowitz, Carla Rosa</creatorcontrib><creatorcontrib>Calmon, Angélique Sophie</creatorcontrib><creatorcontrib>Axerio-Cilies, John</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Golden, Daniel Irving</au><au>Krishnan, Anitha Priya</au><au>Beckers, Fabien Rafael David</au><au>Le, Matthieu</au><au>Newton, Robert George</au><au>Didonato, Matthew Joseph</au><au>Law, Shek Bun</au><au>Lau, Hok Kan</au><au>Sall, Sean Patrick</au><au>Taerum, Torin Arni</au><au>Lieman-Sifry, Jesse</au><au>Leibowitz, Carla Rosa</au><au>Calmon, Angélique Sophie</au><au>Axerio-Cilies, John</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content based image retrieval for lesion analysis</title><date>2024-12-31</date><risdate>2024</risdate><abstract>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12183001B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Content based image retrieval for lesion analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Golden,%20Daniel%20Irving&rft.date=2024-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12183001B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true