Content based image retrieval for lesion analysis
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for ac...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Golden, Daniel Irving Krishnan, Anitha Priya Beckers, Fabien Rafael David Le, Matthieu Newton, Robert George Didonato, Matthew Joseph Law, Shek Bun Lau, Hok Kan Sall, Sean Patrick Taerum, Torin Arni Lieman-Sifry, Jesse Leibowitz, Carla Rosa Calmon, Angélique Sophie Axerio-Cilies, John |
description | Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12183001B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12183001B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12183001B23</originalsourceid><addsrcrecordid>eNrjZDB0zs8rSc0rUUhKLE5NUcjMTUxPVShKLSnKTC1LzFFIyy9SyEktzszPU0jMS8ypLM4s5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhkaGFsYGBoZORsbEqAEAmL8rzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content based image retrieval for lesion analysis</title><source>esp@cenet</source><creator>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</creator><creatorcontrib>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</creatorcontrib><description>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241231&DB=EPODOC&CC=US&NR=12183001B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241231&DB=EPODOC&CC=US&NR=12183001B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Golden, Daniel Irving</creatorcontrib><creatorcontrib>Krishnan, Anitha Priya</creatorcontrib><creatorcontrib>Beckers, Fabien Rafael David</creatorcontrib><creatorcontrib>Le, Matthieu</creatorcontrib><creatorcontrib>Newton, Robert George</creatorcontrib><creatorcontrib>Didonato, Matthew Joseph</creatorcontrib><creatorcontrib>Law, Shek Bun</creatorcontrib><creatorcontrib>Lau, Hok Kan</creatorcontrib><creatorcontrib>Sall, Sean Patrick</creatorcontrib><creatorcontrib>Taerum, Torin Arni</creatorcontrib><creatorcontrib>Lieman-Sifry, Jesse</creatorcontrib><creatorcontrib>Leibowitz, Carla Rosa</creatorcontrib><creatorcontrib>Calmon, Angélique Sophie</creatorcontrib><creatorcontrib>Axerio-Cilies, John</creatorcontrib><title>Content based image retrieval for lesion analysis</title><description>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB0zs8rSc0rUUhKLE5NUcjMTUxPVShKLSnKTC1LzFFIyy9SyEktzszPU0jMS8ypLM4s5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhkaGFsYGBoZORsbEqAEAmL8rzA</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Golden, Daniel Irving</creator><creator>Krishnan, Anitha Priya</creator><creator>Beckers, Fabien Rafael David</creator><creator>Le, Matthieu</creator><creator>Newton, Robert George</creator><creator>Didonato, Matthew Joseph</creator><creator>Law, Shek Bun</creator><creator>Lau, Hok Kan</creator><creator>Sall, Sean Patrick</creator><creator>Taerum, Torin Arni</creator><creator>Lieman-Sifry, Jesse</creator><creator>Leibowitz, Carla Rosa</creator><creator>Calmon, Angélique Sophie</creator><creator>Axerio-Cilies, John</creator><scope>EVB</scope></search><sort><creationdate>20241231</creationdate><title>Content based image retrieval for lesion analysis</title><author>Golden, Daniel Irving ; Krishnan, Anitha Priya ; Beckers, Fabien Rafael David ; Le, Matthieu ; Newton, Robert George ; Didonato, Matthew Joseph ; Law, Shek Bun ; Lau, Hok Kan ; Sall, Sean Patrick ; Taerum, Torin Arni ; Lieman-Sifry, Jesse ; Leibowitz, Carla Rosa ; Calmon, Angélique Sophie ; Axerio-Cilies, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12183001B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Golden, Daniel Irving</creatorcontrib><creatorcontrib>Krishnan, Anitha Priya</creatorcontrib><creatorcontrib>Beckers, Fabien Rafael David</creatorcontrib><creatorcontrib>Le, Matthieu</creatorcontrib><creatorcontrib>Newton, Robert George</creatorcontrib><creatorcontrib>Didonato, Matthew Joseph</creatorcontrib><creatorcontrib>Law, Shek Bun</creatorcontrib><creatorcontrib>Lau, Hok Kan</creatorcontrib><creatorcontrib>Sall, Sean Patrick</creatorcontrib><creatorcontrib>Taerum, Torin Arni</creatorcontrib><creatorcontrib>Lieman-Sifry, Jesse</creatorcontrib><creatorcontrib>Leibowitz, Carla Rosa</creatorcontrib><creatorcontrib>Calmon, Angélique Sophie</creatorcontrib><creatorcontrib>Axerio-Cilies, John</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Golden, Daniel Irving</au><au>Krishnan, Anitha Priya</au><au>Beckers, Fabien Rafael David</au><au>Le, Matthieu</au><au>Newton, Robert George</au><au>Didonato, Matthew Joseph</au><au>Law, Shek Bun</au><au>Lau, Hok Kan</au><au>Sall, Sean Patrick</au><au>Taerum, Torin Arni</au><au>Lieman-Sifry, Jesse</au><au>Leibowitz, Carla Rosa</au><au>Calmon, Angélique Sophie</au><au>Axerio-Cilies, John</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content based image retrieval for lesion analysis</title><date>2024-12-31</date><risdate>2024</risdate><abstract>Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12183001B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA IMAGE DATA PROCESSING OR GENERATION, IN GENERAL INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Content based image retrieval for lesion analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Golden,%20Daniel%20Irving&rft.date=2024-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12183001B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |