Methods and apparatus for anomaly detections

This application relates to apparatus and methods for identifying anomalies within data, such as pricing data. In some examples, a computing device receives data updates and selects a machine learning model to apply to the data update. The computing device may train the machine learning model with f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Chao, Ramakrishnan, Jagdish, Shaabani, Elham, Sustik, Matyas A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Li, Chao
Ramakrishnan, Jagdish
Shaabani, Elham
Sustik, Matyas A
description This application relates to apparatus and methods for identifying anomalies within data, such as pricing data. In some examples, a computing device receives data updates and selects a machine learning model to apply to the data update. The computing device may train the machine learning model with features generated based on historical purchase order data. An anomaly score is generated based on application of the machine learning model. Based on the anomaly score, the data update is either allowed, or denied. In some examples, the computing device re-trains the machine learning model with detected anomalies. In some embodiments, the computing device prioritizes detected anomalies for further investigation. In some embodiments, the computing device identifies the cause of the anomalies by identifying at least one feature that is causing the anomaly.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12175505B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12175505B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12175505B23</originalsourceid><addsrcrecordid>eNrjZNDxTS3JyE8pVkjMS1FILChILEosKS1WSMsvAork5ybmVCqkpJakJpdk5ucV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQyNDc1NTA1MnI2Ni1AAApx0qHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods and apparatus for anomaly detections</title><source>esp@cenet</source><creator>Li, Chao ; Ramakrishnan, Jagdish ; Shaabani, Elham ; Sustik, Matyas A</creator><creatorcontrib>Li, Chao ; Ramakrishnan, Jagdish ; Shaabani, Elham ; Sustik, Matyas A</creatorcontrib><description>This application relates to apparatus and methods for identifying anomalies within data, such as pricing data. In some examples, a computing device receives data updates and selects a machine learning model to apply to the data update. The computing device may train the machine learning model with features generated based on historical purchase order data. An anomaly score is generated based on application of the machine learning model. Based on the anomaly score, the data update is either allowed, or denied. In some examples, the computing device re-trains the machine learning model with detected anomalies. In some embodiments, the computing device prioritizes detected anomalies for further investigation. In some embodiments, the computing device identifies the cause of the anomalies by identifying at least one feature that is causing the anomaly.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241224&amp;DB=EPODOC&amp;CC=US&amp;NR=12175505B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241224&amp;DB=EPODOC&amp;CC=US&amp;NR=12175505B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ramakrishnan, Jagdish</creatorcontrib><creatorcontrib>Shaabani, Elham</creatorcontrib><creatorcontrib>Sustik, Matyas A</creatorcontrib><title>Methods and apparatus for anomaly detections</title><description>This application relates to apparatus and methods for identifying anomalies within data, such as pricing data. In some examples, a computing device receives data updates and selects a machine learning model to apply to the data update. The computing device may train the machine learning model with features generated based on historical purchase order data. An anomaly score is generated based on application of the machine learning model. Based on the anomaly score, the data update is either allowed, or denied. In some examples, the computing device re-trains the machine learning model with detected anomalies. In some embodiments, the computing device prioritizes detected anomalies for further investigation. In some embodiments, the computing device identifies the cause of the anomalies by identifying at least one feature that is causing the anomaly.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDxTS3JyE8pVkjMS1FILChILEosKS1WSMsvAork5ybmVCqkpJakJpdk5ucV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQyNDc1NTA1MnI2Ni1AAApx0qHQ</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Li, Chao</creator><creator>Ramakrishnan, Jagdish</creator><creator>Shaabani, Elham</creator><creator>Sustik, Matyas A</creator><scope>EVB</scope></search><sort><creationdate>20241224</creationdate><title>Methods and apparatus for anomaly detections</title><author>Li, Chao ; Ramakrishnan, Jagdish ; Shaabani, Elham ; Sustik, Matyas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12175505B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ramakrishnan, Jagdish</creatorcontrib><creatorcontrib>Shaabani, Elham</creatorcontrib><creatorcontrib>Sustik, Matyas A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chao</au><au>Ramakrishnan, Jagdish</au><au>Shaabani, Elham</au><au>Sustik, Matyas A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods and apparatus for anomaly detections</title><date>2024-12-24</date><risdate>2024</risdate><abstract>This application relates to apparatus and methods for identifying anomalies within data, such as pricing data. In some examples, a computing device receives data updates and selects a machine learning model to apply to the data update. The computing device may train the machine learning model with features generated based on historical purchase order data. An anomaly score is generated based on application of the machine learning model. Based on the anomaly score, the data update is either allowed, or denied. In some examples, the computing device re-trains the machine learning model with detected anomalies. In some embodiments, the computing device prioritizes detected anomalies for further investigation. In some embodiments, the computing device identifies the cause of the anomalies by identifying at least one feature that is causing the anomaly.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12175505B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Methods and apparatus for anomaly detections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Li,%20Chao&rft.date=2024-12-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12175505B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true